Spaces:
Sleeping
Sleeping
segmindRT
Browse files
app.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
import numpy as np
|
2 |
import PIL.Image
|
3 |
import torch
|
4 |
-
from
|
5 |
-
from diffusers.utils import numpy_to_pil
|
6 |
-
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
7 |
-
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
|
8 |
from fastapi import FastAPI
|
9 |
import uvicorn
|
10 |
from fastapi.middleware.cors import CORSMiddleware
|
@@ -20,11 +17,8 @@ from fastapi.middleware.cors import CORSMiddleware
|
|
20 |
|
21 |
logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO"))
|
22 |
|
23 |
-
MAX_SEED = np.iinfo(np.int32).max
|
24 |
-
USE_TORCH_COMPILE = os.environ.get("USE_TORCH_COMPILE", "0") == "1"
|
25 |
SPACE_ID = os.environ.get("SPACE_ID", "")
|
26 |
DEV = os.environ.get("DEV", "0") == "1"
|
27 |
-
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
28 |
|
29 |
DB_PATH = Path("/data/cache") if SPACE_ID else Path("./cache")
|
30 |
IMGS_PATH = DB_PATH / "imgs"
|
@@ -33,64 +27,39 @@ IMGS_PATH.mkdir(exist_ok=True, parents=True)
|
|
33 |
|
34 |
database = Database(DB_PATH)
|
35 |
|
|
|
|
|
|
|
|
|
36 |
dtype = torch.bfloat16
|
37 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
38 |
if torch.cuda.is_available():
|
39 |
-
|
40 |
-
|
41 |
-
)
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
decoder_pipeline.to(device)
|
47 |
-
|
48 |
-
if USE_TORCH_COMPILE:
|
49 |
-
prior_pipeline.prior = torch.compile(
|
50 |
-
prior_pipeline.prior, mode="reduce-overhead", fullgraph=True
|
51 |
-
)
|
52 |
-
decoder_pipeline.decoder = torch.compile(
|
53 |
-
decoder_pipeline.decoder, mode="max-autotune", fullgraph=True
|
54 |
-
)
|
55 |
|
56 |
|
57 |
def generate(
|
58 |
prompt: str,
|
59 |
negative_prompt: str = "",
|
60 |
seed: int = 0,
|
61 |
-
width: int = 1024,
|
62 |
-
height: int = 1024,
|
63 |
-
prior_num_inference_steps: int = 20,
|
64 |
-
prior_guidance_scale: float = 4.0,
|
65 |
-
decoder_num_inference_steps: int = 10,
|
66 |
-
decoder_guidance_scale: float = 0.0,
|
67 |
-
num_images_per_prompt: int = 2,
|
68 |
) -> PIL.Image.Image:
|
69 |
|
70 |
generator = torch.Generator().manual_seed(seed)
|
71 |
-
|
72 |
-
|
73 |
-
height=height,
|
74 |
-
width=width,
|
75 |
-
num_inference_steps=prior_num_inference_steps,
|
76 |
-
timesteps=DEFAULT_STAGE_C_TIMESTEPS,
|
77 |
-
negative_prompt=negative_prompt,
|
78 |
-
guidance_scale=prior_guidance_scale,
|
79 |
-
num_images_per_prompt=num_images_per_prompt,
|
80 |
-
generator=generator,
|
81 |
-
)
|
82 |
-
decoder_output = decoder_pipeline(
|
83 |
-
image_embeddings=prior_output.image_embeddings,
|
84 |
prompt=prompt,
|
85 |
-
num_inference_steps=decoder_num_inference_steps,
|
86 |
-
# timesteps=decoder_timesteps,
|
87 |
-
guidance_scale=decoder_guidance_scale,
|
88 |
negative_prompt=negative_prompt,
|
89 |
generator=generator,
|
90 |
-
|
91 |
-
|
|
|
92 |
|
93 |
-
return
|
94 |
|
95 |
|
96 |
app = FastAPI()
|
@@ -120,7 +89,9 @@ app.add_middleware(
|
|
120 |
|
121 |
|
122 |
@app.get("/image")
|
123 |
-
async def generate_image(
|
|
|
|
|
124 |
cached_img = database.check(prompt, negative_prompt, seed)
|
125 |
if cached_img:
|
126 |
logging.info(f"Image found in cache: {cached_img[0]}")
|
|
|
1 |
import numpy as np
|
2 |
import PIL.Image
|
3 |
import torch
|
4 |
+
from diffusers import LCMScheduler, AutoPipelineForText2Image
|
|
|
|
|
|
|
5 |
from fastapi import FastAPI
|
6 |
import uvicorn
|
7 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
17 |
|
18 |
logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO"))
|
19 |
|
|
|
|
|
20 |
SPACE_ID = os.environ.get("SPACE_ID", "")
|
21 |
DEV = os.environ.get("DEV", "0") == "1"
|
|
|
22 |
|
23 |
DB_PATH = Path("/data/cache") if SPACE_ID else Path("./cache")
|
24 |
IMGS_PATH = DB_PATH / "imgs"
|
|
|
27 |
|
28 |
database = Database(DB_PATH)
|
29 |
|
30 |
+
|
31 |
+
model_id = "segmind/Segmind-Vega"
|
32 |
+
adapter_id = "segmind/Segmind-VegaRT"
|
33 |
+
|
34 |
dtype = torch.bfloat16
|
35 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
36 |
if torch.cuda.is_available():
|
37 |
+
pipe = AutoPipelineForText2Image.from_pretrained(
|
38 |
+
model_id, torch_dtype=torch.float16, variant="fp16"
|
39 |
+
)
|
40 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
41 |
+
pipe.to("cuda")
|
42 |
+
pipe.load_lora_weights(adapter_id)
|
43 |
+
pipe.fuse_lora()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
|
46 |
def generate(
|
47 |
prompt: str,
|
48 |
negative_prompt: str = "",
|
49 |
seed: int = 0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
) -> PIL.Image.Image:
|
51 |
|
52 |
generator = torch.Generator().manual_seed(seed)
|
53 |
+
|
54 |
+
image = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
prompt=prompt,
|
|
|
|
|
|
|
56 |
negative_prompt=negative_prompt,
|
57 |
generator=generator,
|
58 |
+
num_inference_steps=4,
|
59 |
+
guidance_scale=0,
|
60 |
+
).images[0]
|
61 |
|
62 |
+
return image
|
63 |
|
64 |
|
65 |
app = FastAPI()
|
|
|
89 |
|
90 |
|
91 |
@app.get("/image")
|
92 |
+
async def generate_image(
|
93 |
+
prompt: str, negative_prompt: str = "", seed: int = 2134213213
|
94 |
+
):
|
95 |
cached_img = database.check(prompt, negative_prompt, seed)
|
96 |
if cached_img:
|
97 |
logging.info(f"Image found in cache: {cached_img[0]}")
|