Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,10 @@ import gradio as gr
|
|
2 |
from pyannote.audio import Pipeline
|
3 |
import torch
|
4 |
import os
|
|
|
|
|
|
|
|
|
5 |
|
6 |
hf_token = os.getenv("HF_TOKEN")
|
7 |
|
@@ -9,26 +13,59 @@ hf_token = os.getenv("HF_TOKEN")
|
|
9 |
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token=hf_token)
|
10 |
pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
11 |
|
12 |
-
def
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
inputs=gr.Audio(type="numpy"),
|
26 |
-
outputs=[
|
27 |
-
|
28 |
-
|
29 |
-
],
|
30 |
-
title="Speaker Diarization",
|
31 |
-
description="Upload an audio file and get the segments where each speaker talks."
|
32 |
)
|
33 |
|
34 |
-
|
|
|
2 |
from pyannote.audio import Pipeline
|
3 |
import torch
|
4 |
import os
|
5 |
+
import numpy as np
|
6 |
+
from pydub import AudioSegment
|
7 |
+
import io
|
8 |
+
import zipfile
|
9 |
|
10 |
hf_token = os.getenv("HF_TOKEN")
|
11 |
|
|
|
13 |
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token=hf_token)
|
14 |
pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
15 |
|
16 |
+
def diarize_and_split(audio, sr):
|
17 |
+
# Convert to mono if stereo
|
18 |
+
if len(audio.shape) > 1:
|
19 |
+
audio = np.mean(audio, axis=1)
|
20 |
+
|
21 |
+
# Perform diarization
|
22 |
+
diarization = pipeline({"waveform": torch.from_numpy(audio), "sample_rate": sr})
|
23 |
+
|
24 |
+
# Create an AudioSegment from the numpy array
|
25 |
+
audio_segment = AudioSegment(
|
26 |
+
audio.tobytes(),
|
27 |
+
frame_rate=sr,
|
28 |
+
sample_width=audio.dtype.itemsize,
|
29 |
+
channels=1
|
30 |
+
)
|
31 |
+
|
32 |
+
speaker_segments = {}
|
33 |
+
|
34 |
+
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
35 |
+
start_ms = int(turn.start * 1000)
|
36 |
+
end_ms = int(turn.end * 1000)
|
37 |
+
segment = audio_segment[start_ms:end_ms]
|
38 |
+
|
39 |
+
if speaker not in speaker_segments:
|
40 |
+
speaker_segments[speaker] = []
|
41 |
+
speaker_segments[speaker].append(segment)
|
42 |
+
|
43 |
+
# Create zip files for each speaker
|
44 |
+
zip_files = {}
|
45 |
+
for speaker, segments in speaker_segments.items():
|
46 |
+
zip_buffer = io.BytesIO()
|
47 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
48 |
+
for i, segment in enumerate(segments):
|
49 |
+
segment_buffer = io.BytesIO()
|
50 |
+
segment.export(segment_buffer, format="wav")
|
51 |
+
zip_file.writestr(f"{speaker}_segment_{i}.wav", segment_buffer.getvalue())
|
52 |
+
|
53 |
+
zip_buffer.seek(0)
|
54 |
+
zip_files[f"{speaker}.zip"] = zip_buffer.getvalue()
|
55 |
+
|
56 |
+
return zip_files
|
57 |
|
58 |
+
def process_audio(audio):
|
59 |
+
sr, audio_data = audio
|
60 |
+
zip_files = diarize_and_split(audio_data, sr)
|
61 |
+
return list(zip_files.values())
|
62 |
+
|
63 |
+
iface = gr.Interface(
|
64 |
+
fn=process_audio,
|
65 |
inputs=gr.Audio(type="numpy"),
|
66 |
+
outputs=[gr.File(label="Speaker Zip Files") for _ in range(10)], # Assuming max 10 speakers
|
67 |
+
title="Speaker Diarization and Audio Splitting",
|
68 |
+
description="Upload an audio file to split it into separate files for each speaker."
|
|
|
|
|
|
|
69 |
)
|
70 |
|
71 |
+
iface.launch()
|