Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,596 Bytes
3fb91e0 9dc238a 63a13ce 3fb91e0 63a13ce 3fb91e0 9dc238a 3fb91e0 63a13ce 9dc238a 3fb91e0 9dc238a 3fb91e0 9dc238a 3fb91e0 9dc238a 3fb91e0 9dc238a 3fb91e0 9dc238a 3fb91e0 9dc238a 63a13ce 9dc238a 3fb91e0 63a13ce 9dc238a 3fb91e0 9dc238a 63a13ce 9dc238a 3fb91e0 9dc238a 3fb91e0 9dc238a 3fb91e0 63a13ce 9dc238a 3fb91e0 9dc238a 3fb91e0 9dc238a 3fb91e0 9dc238a 63a13ce 9dc238a 63a13ce 9dc238a 3fb91e0 9dc238a 3fb91e0 9dc238a 3fb91e0 9dc238a 3fb91e0 63a13ce 3fb91e0 9dc238a 3fb91e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import gradio as gr
import moviepy.editor as mp
from moviepy.video.tools.subtitles import SubtitlesClip
from datetime import timedelta
import os
import logging
from transformers import (
AutoModelForSpeechSeq2Seq,
AutoProcessor,
MarianMTModel,
MarianTokenizer,
pipeline
)
import torch
import numpy as np
from pydub import AudioSegment
import spaces
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('video_subtitler.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Dictionary of supported languages and their codes for MarianMT
LANGUAGE_CODES = {
"English": "en",
"Spanish": "es",
"French": "fr",
"German": "de",
"Italian": "it",
"Portuguese": "pt",
"Russian": "ru",
"Chinese": "zh",
"Japanese": "ja",
"Korean": "ko"
}
def get_model_name(source_lang, target_lang):
"""Get MarianMT model name for language pair"""
logger.info(f"Getting model name for translation from {source_lang} to {target_lang}")
return f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
def format_timestamp(seconds):
"""Convert seconds to SRT timestamp format"""
td = timedelta(seconds=seconds)
hours = td.seconds//3600
minutes = (td.seconds//60)%60
seconds = td.seconds%60
milliseconds = td.microseconds//1000
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
def translate_text(text, source_lang, target_lang):
"""Translate text using MarianMT"""
if source_lang == target_lang:
logger.info("Source and target languages are the same, skipping translation")
return text
try:
logger.info(f"Translating text from {source_lang} to {target_lang}")
model_name = get_model_name(source_lang, target_lang)
logger.info(f"Loading translation model: {model_name}")
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
logger.debug(f"Input text: {text}")
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
translated = model.generate(**inputs)
translated_text = tokenizer.batch_decode(translated, skip_special_tokens=True)[0]
logger.debug(f"Translated text: {translated_text}")
return translated_text
except Exception as e:
logger.error(f"Translation error: {str(e)}", exc_info=True)
return text
def load_audio(video_path):
"""Extract and load audio from video file"""
logger.info(f"Loading audio from video: {video_path}")
try:
video = mp.VideoFileClip(video_path)
logger.info(f"Video loaded. Duration: {video.duration} seconds")
temp_audio_path = "temp_audio.wav"
logger.info(f"Extracting audio to temporary file: {temp_audio_path}")
video.audio.write_audiofile(temp_audio_path)
logger.info("Loading audio file with pydub")
audio = AudioSegment.from_wav(temp_audio_path)
audio_array = np.array(audio.get_array_of_samples())
logger.info("Converting audio to float32 and normalizing")
audio_array = audio_array.astype(np.float32) / np.iinfo(np.int16).max
if len(audio_array.shape) > 1:
logger.info("Converting stereo to mono")
audio_array = audio_array.mean(axis=1)
logger.info(f"Audio loaded successfully. Shape: {audio_array.shape}, Sample rate: {audio.frame_rate}")
return audio_array, audio.frame_rate, video, temp_audio_path
except Exception as e:
logger.error(f"Error loading audio: {str(e)}", exc_info=True)
raise
def create_srt(segments, target_lang="en"):
"""Convert transcribed segments to SRT format with optional translation"""
logger.info(f"Creating SRT content for {len(segments)} segments")
srt_content = ""
for i, segment in enumerate(segments, start=1):
start_time = format_timestamp(segment['start'])
end_time = format_timestamp(segment['end'])
text = segment['text'].strip()
logger.debug(f"Processing segment {i}: {start_time} --> {end_time}")
if segment.get('language') and segment['language'] != target_lang:
logger.info(f"Translating segment {i}")
text = translate_text(text, segment['language'], target_lang)
srt_content += f"{i}\n{start_time} --> {end_time}\n{text}\n\n"
return srt_content
def create_subtitle_clips(segments, videosize, target_lang="en"):
"""Create subtitle clips for moviepy with translation support"""
logger.info(f"Creating subtitle clips for {len(segments)} segments")
subtitle_clips = []
for i, segment in enumerate(segments):
logger.debug(f"Processing subtitle clip {i}")
start_time = segment['start']
end_time = segment['end']
duration = end_time - start_time
text = segment['text'].strip()
if segment.get('language') and segment['language'] != target_lang:
logger.info(f"Translating subtitle {i}")
text = translate_text(text, segment['language'], target_lang)
try:
text_clip = mp.TextClip(
text,
font='Arial',
fontsize=24,
color='white',
stroke_color='black',
stroke_width=1,
size=videosize,
method='caption'
).set_position(('center', 'bottom'))
text_clip = text_clip.set_start(start_time).set_duration(duration)
subtitle_clips.append(text_clip)
except Exception as e:
logger.error(f"Error creating subtitle clip {i}: {str(e)}", exc_info=True)
return subtitle_clips
@spaces.GPU
def process_video(video_path, target_lang="en"):
"""Main function to process video and add subtitles with translation"""
logger.info(f"Starting video processing: {video_path}")
try:
# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
# Load CrisperWhisper model
model_id = "nyrahealth/CrisperWhisper"
logger.info(f"Loading CrisperWhisper model: {model_id}")
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
low_cpu_mem_usage=True,
use_safetensors=True
).to(device)
logger.info("Loading processor")
processor = AutoProcessor.from_pretrained(model_id)
# Load audio and video
logger.info("Loading audio from video")
audio_array, sampling_rate, video, temp_audio_path = load_audio(video_path)
# Create pipeline
logger.info("Creating ASR pipeline")
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
device=device,
)
# Transcribe audio
logger.info("Starting transcription")
result = pipe(audio_array, return_timestamps="word")
logger.info("Transcription completed")
logger.debug(f"Transcription result: {result}")
# Convert word-level timestamps to segments
logger.info("Converting word-level timestamps to segments")
segments = []
current_segment = {"text": "", "start": result["chunks"][0]["timestamp"][0]}
for chunk in result["chunks"]:
current_segment["text"] += " " + chunk["text"]
current_segment["end"] = chunk["timestamp"][1]
if len(current_segment["text"].split()) > 10 or \
(current_segment["end"] - current_segment["start"]) > 5.0:
segments.append(current_segment)
if chunk != result["chunks"][-1]:
current_segment = {"text": "", "start": chunk["timestamp"][1]}
if current_segment["text"]:
segments.append(current_segment)
logger.info(f"Created {len(segments)} segments")
# Add detected language
detected_language = "en"
for segment in segments:
segment['language'] = detected_language
# Create SRT content
logger.info("Creating SRT content")
srt_content = create_srt(segments, target_lang)
# Save SRT file
video_name = os.path.splitext(os.path.basename(video_path))[0]
srt_path = f"{video_name}_subtitles_{target_lang}.srt"
logger.info(f"Saving SRT file: {srt_path}")
with open(srt_path, "w", encoding="utf-8") as f:
f.write(srt_content)
# Create subtitle clips
logger.info("Creating subtitle clips")
subtitle_clips = create_subtitle_clips(segments, video.size, target_lang)
# Combine video with subtitles
logger.info("Combining video with subtitles")
final_video = mp.CompositeVideoClip([video] + subtitle_clips)
# Save final video
output_video_path = f"{video_name}_with_subtitles_{target_lang}.mp4"
logger.info(f"Saving final video: {output_video_path}")
final_video.write_videofile(output_video_path)
# Clean up
logger.info("Cleaning up temporary files")
os.remove(temp_audio_path)
video.close()
final_video.close()
logger.info("Video processing completed successfully")
return output_video_path, srt_path
except Exception as e:
logger.error(f"Error in video processing: {str(e)}", exc_info=True)
raise
def gradio_interface(video_file, target_language):
"""Gradio interface function with language selection"""
try:
logger.info(f"Processing new video request: {video_file.name}")
logger.info(f"Target language: {target_language}")
video_path = video_file.name
target_lang = LANGUAGE_CODES[target_language]
output_video, srt_file = process_video(video_path, target_lang)
logger.info("Processing completed successfully")
return output_video, srt_file
except Exception as e:
logger.error(f"Error in Gradio interface: {str(e)}", exc_info=True)
return str(e), None
# Create Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Video(label="Upload Video"),
gr.Dropdown(
choices=list(LANGUAGE_CODES.keys()),
value="English",
label="Target Language"
)
],
outputs=[
gr.Video(label="Video with Subtitles"),
gr.File(label="SRT Subtitle File")
],
title="Video Subtitler with CrisperWhisper",
description="Upload a video to generate subtitles using CrisperWhisper, translate them to your chosen language, and embed them directly in the video."
)
if __name__ == "__main__":
logger.info("Starting Video Subtitler application")
iface.launch() |