Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sqlite3
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
+
from sqlalchemy import create_engine
|
6 |
+
from sqlalchemy.pool import StaticPool
|
7 |
+
from langchain import OpenAI, SQLDatabase, SQLDatabaseChain
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
#####################################
|
12 |
+
# FUNCTIONS #
|
13 |
+
#####################################
|
14 |
+
@st.cache_data()
|
15 |
+
def load_data(url):
|
16 |
+
"""
|
17 |
+
load data from url
|
18 |
+
"""
|
19 |
+
df = pd.read_csv(url)
|
20 |
+
return df
|
21 |
+
|
22 |
+
|
23 |
+
def prepare_data(df):
|
24 |
+
"""
|
25 |
+
lowercase columns
|
26 |
+
"""
|
27 |
+
df.columns = [x.replace(' ', '_').lower() for x in df.columns]
|
28 |
+
return df
|
29 |
+
|
30 |
+
|
31 |
+
#####################################
|
32 |
+
# LOCALS & CONSTANTS #
|
33 |
+
#####################################
|
34 |
+
table_name = 'taxlien'
|
35 |
+
uri = "file::memory:?cache=shared"
|
36 |
+
|
37 |
+
#####################################
|
38 |
+
# HOME PAGE #
|
39 |
+
#####################################
|
40 |
+
st.title('TAX LIEN CERTIFICATES - FL :house:')
|
41 |
+
st.subheader('Upload a file to query')
|
42 |
+
|
43 |
+
# read file
|
44 |
+
uploaded_file = st.file_uploader("Choose a csv file")
|
45 |
+
if uploaded_file is not None:
|
46 |
+
df = pd.read_csv(uploaded_file)
|
47 |
+
st.write(df)
|
48 |
+
|
49 |
+
# api key
|
50 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
51 |
+
|
52 |
+
# user query
|
53 |
+
user_q = st.text_input(
|
54 |
+
"User Query",
|
55 |
+
help="Enter a question based on the dataset")
|
56 |
+
|
57 |
+
# commit data to sql
|
58 |
+
data = prepare_data(df)
|
59 |
+
conn = sqlite3.connect(uri)
|
60 |
+
data.to_sql(table_name, conn, if_exists='replace', index=False)
|
61 |
+
|
62 |
+
# create db engine
|
63 |
+
eng = create_engine(
|
64 |
+
url='sqlite:///file:memdb1?mode=memory&cache=shared',
|
65 |
+
poolclass=StaticPool, # single connection for requests
|
66 |
+
creator=lambda: conn)
|
67 |
+
db = SQLDatabase(engine=eng)
|
68 |
+
|
69 |
+
# create open AI conn and db chain
|
70 |
+
if openai_api_key:
|
71 |
+
llm_chain = OpenAI(
|
72 |
+
openai_api_key=openai_api_key,
|
73 |
+
temperature=0, # creative scale
|
74 |
+
max_tokens=300)
|
75 |
+
db_chain = SQLDatabaseChain(llm=llm_chain, database=db, verbose=True)
|
76 |
+
|
77 |
+
# run query and display result
|
78 |
+
if openai_api_key and user_q:
|
79 |
+
result = db_chain.run(user_q)
|
80 |
+
st.write(result)
|
81 |
+
|