Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
model_name = "tabularisai/multilingual-sentiment-analysis" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
def predict_sentiment(texts): | |
inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
sentiment_map = {0: "Very Negative", 1: "Negative", 2: "Neutral", 3: "Positive", 4: "Very Positive"} | |
return [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()] |