File size: 9,278 Bytes
5a2cb18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "os.chdir(\"D:\\ml_project\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>gender</th>\n",
       "      <th>race_ethnicity</th>\n",
       "      <th>parental_level_of_education</th>\n",
       "      <th>lunch</th>\n",
       "      <th>test_preparation_course</th>\n",
       "      <th>math_score</th>\n",
       "      <th>reading_score</th>\n",
       "      <th>writing_score</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>female</td>\n",
       "      <td>group B</td>\n",
       "      <td>bachelor's degree</td>\n",
       "      <td>standard</td>\n",
       "      <td>none</td>\n",
       "      <td>72</td>\n",
       "      <td>72</td>\n",
       "      <td>74</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>female</td>\n",
       "      <td>group C</td>\n",
       "      <td>some college</td>\n",
       "      <td>standard</td>\n",
       "      <td>completed</td>\n",
       "      <td>69</td>\n",
       "      <td>90</td>\n",
       "      <td>88</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>female</td>\n",
       "      <td>group B</td>\n",
       "      <td>master's degree</td>\n",
       "      <td>standard</td>\n",
       "      <td>none</td>\n",
       "      <td>90</td>\n",
       "      <td>95</td>\n",
       "      <td>93</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>male</td>\n",
       "      <td>group A</td>\n",
       "      <td>associate's degree</td>\n",
       "      <td>free/reduced</td>\n",
       "      <td>none</td>\n",
       "      <td>47</td>\n",
       "      <td>57</td>\n",
       "      <td>44</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>male</td>\n",
       "      <td>group C</td>\n",
       "      <td>some college</td>\n",
       "      <td>standard</td>\n",
       "      <td>none</td>\n",
       "      <td>76</td>\n",
       "      <td>78</td>\n",
       "      <td>75</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   gender race_ethnicity parental_level_of_education         lunch  \\\n",
       "0  female        group B           bachelor's degree      standard   \n",
       "1  female        group C                some college      standard   \n",
       "2  female        group B             master's degree      standard   \n",
       "3    male        group A          associate's degree  free/reduced   \n",
       "4    male        group C                some college      standard   \n",
       "\n",
       "  test_preparation_course  math_score  reading_score  writing_score  \n",
       "0                    none          72             72             74  \n",
       "1               completed          69             90             88  \n",
       "2                    none          90             95             93  \n",
       "3                    none          47             57             44  \n",
       "4                    none          76             78             75  "
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df  = pd.read_csv(\"data.csv\")\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>math_score</th>\n",
       "      <th>reading_score</th>\n",
       "      <th>writing_score</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>count</th>\n",
       "      <td>1000.00000</td>\n",
       "      <td>1000.000000</td>\n",
       "      <td>1000.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>mean</th>\n",
       "      <td>66.08900</td>\n",
       "      <td>69.169000</td>\n",
       "      <td>68.054000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>std</th>\n",
       "      <td>15.16308</td>\n",
       "      <td>14.600192</td>\n",
       "      <td>15.195657</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>min</th>\n",
       "      <td>0.00000</td>\n",
       "      <td>17.000000</td>\n",
       "      <td>10.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25%</th>\n",
       "      <td>57.00000</td>\n",
       "      <td>59.000000</td>\n",
       "      <td>57.750000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>50%</th>\n",
       "      <td>66.00000</td>\n",
       "      <td>70.000000</td>\n",
       "      <td>69.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>75%</th>\n",
       "      <td>77.00000</td>\n",
       "      <td>79.000000</td>\n",
       "      <td>79.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>max</th>\n",
       "      <td>100.00000</td>\n",
       "      <td>100.000000</td>\n",
       "      <td>100.000000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       math_score  reading_score  writing_score\n",
       "count  1000.00000    1000.000000    1000.000000\n",
       "mean     66.08900      69.169000      68.054000\n",
       "std      15.16308      14.600192      15.195657\n",
       "min       0.00000      17.000000      10.000000\n",
       "25%      57.00000      59.000000      57.750000\n",
       "50%      66.00000      70.000000      69.000000\n",
       "75%      77.00000      79.000000      79.000000\n",
       "max     100.00000     100.000000     100.000000"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.describe()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 1000 entries, 0 to 999\n",
      "Data columns (total 8 columns):\n",
      " #   Column                       Non-Null Count  Dtype \n",
      "---  ------                       --------------  ----- \n",
      " 0   gender                       1000 non-null   object\n",
      " 1   race_ethnicity               1000 non-null   object\n",
      " 2   parental_level_of_education  1000 non-null   object\n",
      " 3   lunch                        1000 non-null   object\n",
      " 4   test_preparation_course      1000 non-null   object\n",
      " 5   math_score                   1000 non-null   int64 \n",
      " 6   reading_score                1000 non-null   int64 \n",
      " 7   writing_score                1000 non-null   int64 \n",
      "dtypes: int64(3), object(5)\n",
      "memory usage: 62.6+ KB\n"
     ]
    }
   ],
   "source": [
    "df.info()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.7"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}