import os import sys import numpy as np import pandas as pd import dill import pickle from sklearn.metrics import r2_score from sklearn.model_selection import GridSearchCV from src.exception import CustomException def eval_model(true, predicted): r2_square = r2_score(true, predicted) return r2_square def save_object(file_path , obj): try: dir_path = os.path.dirname(file_path) os.makedirs(dir_path,exist_ok= True) with open(file_path,"wb") as file_obj: pickle.dump(obj,file_obj) except Exception as e: raise CustomException(e,sys) def evaluate_model(X,Y,X_test,Y_test,Models,Param): try: report = {} for i in range(len(list(Models))): model = list(Models.values())[i] para = Param[list(Models.keys())[i]] gs = GridSearchCV(model,para,cv=3) gs.fit(X,Y) model.set_params(**gs.best_params_) model.fit(X,Y) # Make predictions y_train_pred = model.predict(X) y_test_pred = model.predict(X_test) # Evaluate Train and Test dataset model_test_r2 = eval_model(Y_test, y_test_pred) report[(list(Models.keys())[i])] = model_test_r2 return report except Exception as e: raise CustomException(e,sys)