added docs
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: π
|
4 |
colorFrom: red
|
5 |
colorTo: indigo
|
@@ -9,4 +9,4 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
1 |
---
|
2 |
+
title: iBLEU
|
3 |
emoji: π
|
4 |
colorFrom: red
|
5 |
colorTo: indigo
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
iBLEU measures the adequacy and dissimilarity of generated paraphrases.
|
ibleu.py
CHANGED
@@ -7,56 +7,59 @@ from packaging import version
|
|
7 |
import evaluate
|
8 |
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
"""
|
19 |
|
|
|
|
|
|
|
20 |
|
21 |
_KWARGS_DESCRIPTION = """
|
|
|
22 |
Args:
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
Returns:
|
28 |
-
|
29 |
Examples:
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], normalize=False)
|
38 |
-
>>> print(results)
|
39 |
-
{'accuracy': 3.0}
|
40 |
-
Example 3-The same as Example 1, except with `sample_weight` set.
|
41 |
-
>>> accuracy_metric = evaluate.load("accuracy")
|
42 |
-
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], sample_weight=[0.5, 2, 0.7, 0.5, 9, 0.4])
|
43 |
-
>>> print(results)
|
44 |
-
{'accuracy': 0.8778625954198473}
|
45 |
-
"""
|
46 |
-
|
47 |
-
|
48 |
-
_CITATION = """
|
49 |
-
@article{scikit-learn,
|
50 |
-
title={Scikit-learn: Machine Learning in {P}ython},
|
51 |
-
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
|
52 |
-
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
|
53 |
-
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
|
54 |
-
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
|
55 |
-
journal={Journal of Machine Learning Research},
|
56 |
-
volume={12},
|
57 |
-
pages={2825--2830},
|
58 |
-
year={2011}
|
59 |
-
}
|
60 |
"""
|
61 |
|
62 |
|
|
|
7 |
import evaluate
|
8 |
|
9 |
|
10 |
+
_CITATION = """\
|
11 |
+
@inproceedings{sun-zhou-2012-joint,
|
12 |
+
title = "Joint Learning of a Dual {SMT} System for Paraphrase Generation",
|
13 |
+
author = "Sun, Hong and
|
14 |
+
Zhou, Ming",
|
15 |
+
booktitle = "Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
|
16 |
+
month = jul,
|
17 |
+
year = "2012",
|
18 |
+
address = "Jeju Island, Korea",
|
19 |
+
publisher = "Association for Computational Linguistics",
|
20 |
+
url = "https://aclanthology.org/P12-2008",
|
21 |
+
pages = "38--42",
|
22 |
+
}
|
23 |
+
|
24 |
"""
|
25 |
|
26 |
+
_DESCRIPTION = """\
|
27 |
+
iBLEU measures the adequacy and dissimilarity of generated paraphrases.
|
28 |
+
"""
|
29 |
|
30 |
_KWARGS_DESCRIPTION = """
|
31 |
+
Produces iBLEU score from an input and a prediction against one or more references.
|
32 |
Args:
|
33 |
+
inputs (`list` of `str`): list of model inputs. Each input should be tokenized into a list of tokens.
|
34 |
+
predictions (`list` of `str`): list of translations to score. Each translation should be tokenized into a list of tokens.
|
35 |
+
references (`list` of `list` of `str`): A list of lists of references. The contents of the first sub-list are the references for the first prediction, the contents of the second sub-list are for the second prediction, etc. Note that there must be the same number of references for each prediction (i.e. all sub-lists must be of the same length).
|
36 |
+
alpha (`float`): parameter for balancing between adequacy and dissimilarity; smaller Ξ± value indicates larger punishment on self-paraphrase.
|
37 |
+
smooth_method (`str`): The smoothing method to use, defaults to `'exp'`. Possible values are:
|
38 |
+
- `'none'`: no smoothing
|
39 |
+
- `'floor'`: increment zero counts
|
40 |
+
- `'add-k'`: increment num/denom by k for n>1
|
41 |
+
- `'exp'`: exponential decay
|
42 |
+
smooth_value (`float`): The smoothing value. Only valid when `smooth_method='floor'` (in which case `smooth_value` defaults to `0.1`) or `smooth_method='add-k'` (in which case `smooth_value` defaults to `1`).
|
43 |
+
tokenize (`str`): Tokenization method to use for iBLEU. If not provided, defaults to `'zh'` for Chinese, `'ja-mecab'` for Japanese and `'13a'` (mteval) otherwise. Possible values are:
|
44 |
+
- `'none'`: No tokenization.
|
45 |
+
- `'zh'`: Chinese tokenization.
|
46 |
+
- `'13a'`: mimics the `mteval-v13a` script from Moses.
|
47 |
+
- `'intl'`: International tokenization, mimics the `mteval-v14` script from Moses
|
48 |
+
- `'char'`: Language-agnostic character-level tokenization.
|
49 |
+
- `'ja-mecab'`: Japanese tokenization. Uses the [MeCab tokenizer](https://pypi.org/project/mecab-python3).
|
50 |
+
lowercase (`bool`): If `True`, lowercases the input, enabling case-insensitivity. Defaults to `False`.
|
51 |
+
force (`bool`): If `True`, insists that your tokenized input is actually detokenized. Defaults to `False`.
|
52 |
+
use_effective_order (`bool`): If `True`, stops including n-gram orders for which precision is 0. This should be `True`, if sentence-level BLEU will be computed. Defaults to `False`.
|
53 |
Returns:
|
54 |
+
'score': iBLEU score,
|
55 |
Examples:
|
56 |
+
>>> inputs = ["greetings general kenobi", "foo foo bar bar"]
|
57 |
+
>>> predictions = ["hello there general kenobi", "foo bar foobar"]
|
58 |
+
>>> references = [["hello there general kenobi", "hello there !"], ["foo bar foobar", "foo bar foobar"]]
|
59 |
+
>>> ibleu = evaluate.load("rahular/ibleu")
|
60 |
+
>>> results = ibleu.compute(inputs=inputs, predictions=predictions, references=references)
|
61 |
+
>>> print(results)
|
62 |
+
{'score': 60.41585343630594}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
"""
|
64 |
|
65 |
|