Qx-WhatsApp2 / main.py
rairo's picture
Update main.py
d733061 verified
raw
history blame
2.53 kB
import google.generativeai as palm
import pandas as pd
import os
import io
from flask import Flask, request, jsonify
from flask_cors import CORS, cross_origin
import pandas as pd
import firebase_admin
from firebase_admin import credentials, firestore, auth
import requests
import pandas as pd
from datetime import datetime
import os
from pandasai.llm import GoogleGemini
from pandasai import SmartDataframe, SmartDatalake
from pandasai.responses.response_parser import ResponseParser
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import random
from dotenv import load_dotenv
import json
from dotenv import load_dotenv
load_dotenv()
app = Flask(__name__)
cors = CORS(app)
class FlaskResponse(ResponseParser):
def __init__(self,context) -> None:
super().__init__(context)
def format_dataframe(self,result):
st.dataframe(result['value'])
return
def format_plot(self,result):
st.image(result['value'])
return
def format_other(self, result):
st.write(result['value'])
return
gemini_api_key = os.environ['Gemini']
@app.route("/", methods=["GET"])
def home():
return "Hello Qx!"
llm = GoogleGemini(api_key=gemini_api_key)
# Initialize Firebase app
if not firebase_admin._apps:
cred = credentials.Certificate("quant-app-99d09-firebase-adminsdk-6prb1-37f34e1c91.json")
firebase_admin.initialize_app(cred)
db = firestore.client()
@app.route("/predict", methods=["POST"])
@cross_origin()
def bot():
user_id = request.json.get("user_id")
user_question = request.json.get("user_question")
load_dotenv()
inventory_ref = db.collection("test_users").document(user_id).collection('inventory')
sales_ref = db.collection("test_users").document(user_id).collection('sales')
inventory_list = []
for doc in inventory_ref.stream():
a = doc.to_dict()
inventory_list.append(a)
sales_list = []
for doc in sales_ref.stream():
a = doc.to_dict()
sales_list.append(a)
inventory_df = pd.DataFrame(inventory_list)
sales_df = pd.DataFrame(sales_list)
lake = SmartDatalake([inventory_df, sales_df], config={"llm":llm, "response_parser":FlaskResponse, "enable_cache": False, "save_logs":False})
response = lake.chat(user_question)
print(user_question)
return jsonify(response)
if __name__ == "__main__":
app.run(debug=True,host="0.0.0.0", port=7860)