LLM-DetectAIve / app.py
raj-tomar001's picture
Update app.py
ec4d0d3 verified
raw
history blame
7.41 kB
import json
import random
from pathlib import Path
import gradio as gr
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
# Constants
MIN_WORDS = 50
MAX_WORDS = 500
SAMPLE_JSON_PATH = Path('samples.json')
# Load models
def load_model(model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
return pipeline('text-classification', model=model, tokenizer=tokenizer, truncation=True, max_length=512, top_k=4)
classifier = load_model("microsoft/deberta-base")
# Load sample essays
with open(SAMPLE_JSON_PATH, 'r') as f:
demo_essays = json.load(f)
# Global variable to store the current essay index
current_essay_index = None
TEXT_CLASS_MAPPING = {
'LABEL_2': 'Machine-Generated',
'LABEL_0': 'Human-Written',
'LABEL_3': 'Machine-Written, Machine-Humanized',
'LABEL_1': 'Human-Written, Machine-Polished'
}
def process_result_detection_tab(text):
result = classifier(text)[0]
labels = [TEXT_CLASS_MAPPING[x['label']] for x in result]
scores = list(np.array([x['score'] for x in result]))
final_results = dict(zip(labels, scores))
# Return only the label with the highest score
return max(final_results, key=final_results.get)
def update_detection_tab(name):
if name == '':
return ""
return process_result_detection_tab(name)
def active_button_detection_tab(input_text):
if not (50 <= len(input_text.split()) <= 500):
return gr.Button("Check Origin", variant="primary", interactive=False)
return gr.Button("Check Origin", variant="primary", interactive=True)
def clear_detection_tab():
return "", gr.Button("Check Origin", variant="primary", interactive=False)
def count_words_detection_tab(text):
return f'{len(text.split())}/500 words (Minimum 50 words)'
def generate_text_challenge_tab():
global index
mg = gr.Button("Machine-Generated", variant="secondary", interactive=True)
hw = gr.Button("Human-Written", variant="secondary", interactive=True)
mh = gr.Button("Machine-Humanized", variant="secondary", interactive=True)
mp = gr.Button("Machine-Polished", variant="secondary", interactive=True)
index = random.choice(range(80))
essay = demo_essays[index][0]
return essay, mg, hw, mh, mp, ''
def correct_label_challenge_tab():
if 0 <= index < 20 :
return 'Human-Written'
elif 20 <= index < 40:
return 'Machine-Generated'
elif 40 <= index < 60:
return 'Machine-Polished'
elif 60 <= index < 80:
return 'Machine-Humanized'
def show_result_challenge_tab(button):
correct_btn = correct_label_challenge_tab()
mg = gr.Button("Machine-Generated", variant="secondary")
hw = gr.Button("Human-Written", variant="secondary")
mh = gr.Button("Machine-Humanized", variant="secondary")
mp = gr.Button("Machine-Polished", variant="secondary")
if button == 'Machine-Generated':
mg = gr.Button("Machine-Generated", variant="stop")
elif button == 'Human-Written':
hw = gr.Button("Human-Written", variant="stop")
elif button == 'Machine-Humanized':
mh = gr.Button("Machine-Humanized", variant="stop")
elif button == 'Machine-Polished':
mp = gr.Button("Machine-Polished", variant="stop")
if correct_btn == 'Machine-Generated':
mg = gr.Button("Machine-Generated", variant="primary")
elif correct_btn == 'Human-Written':
hw = gr.Button("Human-Written", variant="primary")
elif correct_btn == 'Machine-Humanized':
mh = gr.Button("Machine-Humanized", variant="primary")
elif correct_btn == 'Machine-Polished':
mp = gr.Button("Machine-Polished", variant="primary")
outcome = 'Correct' if button == correct_btn else 'Incorrect'
return outcome, mg, hw, mh, mp
css = """
body, .gradio-container {
font-family: Arial, sans-serif;
}
.gr-input, .gr-textarea {
}
.class-intro {
padding: 15px;
margin-bottom: 20px;
border-radius: 5px;
}
.class-intro h2 {
margin-top: 0;
}
.class-intro p {
margin-bottom: 5px;
}
"""
class_intro_html = """
<div class="class-intro">
<h2>Text Classes</h2>
<p><strong>Human-Written:</strong> Original text created by humans.</p>
<p><strong>Machine-Generated:</strong> Text created by AI from basic prompts, without style instructions.</p>
<p><strong>Human-Written, Machine-Polished:</strong> Human text refined by AI for grammar and flow, without new content.</p>
<p><strong>Machine-Written, Machine-Humanized:</strong> AI-generated text modified to mimic human writing style.</p>
</div>
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("""<h1><centre>LLM-DetectAIve</center></h1>""")
with gr.Tab('Try it!'):
gr.HTML(class_intro_html)
with gr.Row():
input_text = gr.Textbox(placeholder="Paste your text here...", label="Text", lines=10, max_lines=15)
with gr.Row():
wc = gr.Markdown("0/500 words (Minimum 50 words)")
with gr.Row():
check_button = gr.Button("Check Origin", variant="primary", interactive=False)
clear_button = gr.ClearButton([input_text], variant="stop")
out = gr.Label(label='Result')
clear_button.add(out)
check_button.click(fn=update_detection_tab, inputs=[input_text], outputs=out)
input_text.change(count_words_detection_tab, input_text, wc, show_progress=False)
input_text.input(
active_button_detection_tab,
[input_text],
[check_button],
)
clear_button.click(
clear_detection_tab,
inputs=[],
outputs=[input_text, check_button],
)
with gr.Tab('Challenge Yourself!'):
with gr.Row():
generate = gr.Button("Generate Sample Text", variant="primary")
clear = gr.ClearButton([], variant="stop")
with gr.Row():
text = gr.Textbox(value="", label="Text", lines=20, interactive=False)
with gr.Row():
mg = gr.Button("Machine-Generated", variant="secondary", interactive=False)
hw = gr.Button("Human-Written", variant="secondary", interactive=False)
mh = gr.Button("Machine-Humanized", variant="secondary", interactive=False)
mp = gr.Button("Machine-Polished", variant="secondary", interactive=False)
with gr.Row():
result = gr.Label(label="Result", value="")
clear.add([result, text])
generate.click(generate_text_challenge_tab, [], [text, mg, hw, mh, mp, result])
for button in [mg, hw, mh, mp]:
button.click(show_result_challenge_tab, [button], [result, mg, hw, mh, mp])
clear.click(lambda: ("",
gr.Button("Machine-Generated", variant="secondary", interactive=False),
gr.Button("Human-Written", variant="secondary", interactive=False),
gr.Button("Machine-Humanized", variant="secondary", interactive=False),
gr.Button("Machine-Polished", variant="secondary", interactive=False),
""),
outputs=[text, mg, hw, mh, mp, result])
demo.launch(share=False)