Spaces:
Running
Running
raj-tomar001
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,169 +1,78 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import DebertaTokenizer, DebertaForSequenceClassification, DistilBertTokenizer, DistilBertForSequenceClassification
|
3 |
-
from transformers import pipeline
|
4 |
import json
|
5 |
-
import numpy as np
|
6 |
import random
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
classifier_abstract = pipeline('text-classification', model=model_abstract, tokenizer=tokenizer_abstract)
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
|
|
22 |
|
|
|
|
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def process_result_detection_tab(text):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
Returns:
|
33 |
-
dict: a dictionary with the following keys:
|
34 |
-
'Machine Generated': float: the probability that the text is machine generated
|
35 |
-
'Human Written': float: the probability that the text is human written
|
36 |
-
'Machine Written, Machine Humanized': float: the probability that the text is machine written and machine humanized
|
37 |
-
'Human Written, Machine Polished': float: the probability that the text is human written and machine polished
|
38 |
-
'''
|
39 |
-
mapping = {'llm': 'Machine Generated', 'human':'Human Written', 'machine-humanized': 'Machine Written, Machine Humanized', 'machine-polished': 'Human Written, Machine Polished'}
|
40 |
-
result = classifier_abstract(text)
|
41 |
-
result_r = classifier_essay(text)
|
42 |
-
|
43 |
-
labels = [mapping[x['label']] for x in result]
|
44 |
-
scores = list(0.5 * np.array([x['score'] for x in result]) + 0.5 * np.array([x['score'] for x in result_r]))
|
45 |
|
46 |
final_results = dict(zip(labels, scores))
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
Args:
|
54 |
-
name: str: the input text from the Textbox
|
55 |
-
uploaded_file: file: the uploaded file from the file input
|
56 |
-
Returns:
|
57 |
-
dict: the result of the classification including labels and scores
|
58 |
-
'''
|
59 |
-
|
60 |
-
if name == '' and uploaded_file is None:
|
61 |
return ""
|
62 |
-
|
63 |
-
return f"Work in progress"
|
64 |
-
else:
|
65 |
-
return process_result_detection_tab(name)
|
66 |
|
67 |
-
def active_button_detection_tab(input_text
|
68 |
-
|
69 |
-
Callback function to activate the 'Check Origin' button when the input text or file input
|
70 |
-
is not empty. For text input, the button can be clickde only when the word count is between
|
71 |
-
50 and 500.
|
72 |
-
|
73 |
-
Args:
|
74 |
-
input_text: str: the input text from the textbox
|
75 |
-
file_input: file: the uploaded file from the file input
|
76 |
-
Returns:
|
77 |
-
gr.Button: The 'Check Origin' button with the appropriate interactivity.
|
78 |
-
'''
|
79 |
-
|
80 |
-
if (input_text == "" and file_input is None) or (file_input is None and not (50 <= len(input_text.split()) <= 500)):
|
81 |
return gr.Button("Check Origin", variant="primary", interactive=False)
|
82 |
-
|
83 |
return gr.Button("Check Origin", variant="primary", interactive=True)
|
84 |
|
85 |
def clear_detection_tab():
|
86 |
-
|
87 |
-
Callback function to clear the input text and file input in the 'Try it!' tab.
|
88 |
-
The interactivity of the 'Check Origin' button is set to False to prevent user click when the Textbox is empty.
|
89 |
-
|
90 |
-
Args:
|
91 |
-
None
|
92 |
-
Returns:
|
93 |
-
str: An empty string to clear the Textbox.
|
94 |
-
None: None to clear the file input.
|
95 |
-
gr.Button: The 'Check Origin' button with no interactivity.
|
96 |
-
'''
|
97 |
-
|
98 |
-
return "", None, gr.Button("Check Origin", variant="primary", interactive=False)
|
99 |
|
100 |
def count_words_detection_tab(text):
|
101 |
-
''
|
102 |
-
Callback function called when the input text is changed to update the word count.
|
103 |
-
Args:
|
104 |
-
text: str: the input text from the Textbox
|
105 |
-
Returns:
|
106 |
-
str: the word count of the input text for the Markdown widget
|
107 |
-
'''
|
108 |
-
return (f'{len(text.split())}/500 words (Minimum 50 words)')
|
109 |
-
|
110 |
-
|
111 |
-
################# HELPER FUNCTIONS (CHALLENGE TAB) ####################
|
112 |
-
|
113 |
-
def clear_challenge_tab():
|
114 |
-
'''
|
115 |
-
Callback function to clear the text and result in the 'Challenge Yourself' tab.
|
116 |
-
The interactivity of the buttons is set to False to prevent user click when the Textbox is empty.
|
117 |
-
|
118 |
-
Args:
|
119 |
-
None
|
120 |
-
Returns:
|
121 |
-
gr.Button: The 'Machine-Generated' button with no interactivity.
|
122 |
-
gr.Button: The 'Human-Written' button with no interactivity.
|
123 |
-
gr.Button: The 'Machine-Humanized' button with no interactivity.
|
124 |
-
gr.Button: The 'Machine-Polished' button with no interactivity.
|
125 |
-
str: An empty string to clear the Textbox.
|
126 |
-
'''
|
127 |
-
|
128 |
-
mg = gr.Button("Machine-Generated", variant="secondary", interactive=False)
|
129 |
-
hw = gr.Button("Human-Written", variant="secondary", interactive=False)
|
130 |
-
mh = gr.Button("Machine-Humanized", variant="secondary", interactive=False)
|
131 |
-
mp = gr.Button("Machine-Polished", variant="secondary", interactive=False)
|
132 |
-
|
133 |
-
return mg, hw, mh, mp, ''
|
134 |
|
135 |
def generate_text_challenge_tab():
|
136 |
-
|
137 |
-
|
138 |
-
Args:
|
139 |
-
None
|
140 |
-
Returns:
|
141 |
-
str: A sample text from the dataset
|
142 |
-
gr.Button: The 'Machine-Generated' button with interactivity.
|
143 |
-
gr.Button: The 'Human-Written' button with interactivity.
|
144 |
-
gr.Button: The 'Machine-Humanized' button with interactivity.
|
145 |
-
gr.Button: The 'Machine-Polished' button with interactivity.
|
146 |
-
str: An empty string to clear the Result.
|
147 |
-
'''
|
148 |
-
|
149 |
-
global index # to access the index of the sample text for the show_result function
|
150 |
mg = gr.Button("Machine-Generated", variant="secondary", interactive=True)
|
151 |
hw = gr.Button("Human-Written", variant="secondary", interactive=True)
|
152 |
-
mh = gr.Button("Machine-Humanized", variant="secondary", interactive=True)
|
153 |
mp = gr.Button("Machine-Polished", variant="secondary", interactive=True)
|
|
|
154 |
index = random.choice(range(80))
|
155 |
essay = demo_essays[index][0]
|
156 |
return essay, mg, hw, mh, mp, ''
|
157 |
|
158 |
def correct_label_challenge_tab():
|
159 |
-
'''
|
160 |
-
Function to return the correct label of the sample text based on the index (global variable).
|
161 |
-
Args:
|
162 |
-
None
|
163 |
-
Returns:
|
164 |
-
str: The correct label of the sample text
|
165 |
-
'''
|
166 |
-
|
167 |
if 0 <= index < 20 :
|
168 |
return 'Human-Written'
|
169 |
elif 20 <= index < 40:
|
@@ -174,21 +83,6 @@ def correct_label_challenge_tab():
|
|
174 |
return 'Machine-Humanized'
|
175 |
|
176 |
def show_result_challenge_tab(button):
|
177 |
-
'''
|
178 |
-
Callback function to show the result of the classification based on the button clicked by the user.
|
179 |
-
The correct label of the sample text is displayed in the primary variant.
|
180 |
-
The chosen label by the user is displayed in the stop variant if it is incorrect.
|
181 |
-
|
182 |
-
Args:
|
183 |
-
button: str: the label of the button clicked by the user
|
184 |
-
Returns:
|
185 |
-
str: the outcome of the classification
|
186 |
-
gr.Button: The 'Machine-Generated' button with the appropriate variant.
|
187 |
-
gr.Button: The 'Human-Written' button with the appropriate variant.
|
188 |
-
gr.Button: The 'Machine-Humanized' button with the appropriate variant.
|
189 |
-
gr.Button: The 'Machine-Polished' button with the appropriate variant.
|
190 |
-
'''
|
191 |
-
|
192 |
correct_btn = correct_label_challenge_tab()
|
193 |
mg = gr.Button("Machine-Generated", variant="secondary")
|
194 |
hw = gr.Button("Human-Written", variant="secondary")
|
@@ -213,104 +107,90 @@ def show_result_challenge_tab(button):
|
|
213 |
elif correct_btn == 'Machine-Polished':
|
214 |
mp = gr.Button("Machine-Polished", variant="primary")
|
215 |
|
216 |
-
outcome = ''
|
217 |
-
if button == correct_btn:
|
218 |
-
outcome = 'Correct'
|
219 |
-
else:
|
220 |
-
outcome = 'Incorrect'
|
221 |
|
222 |
return outcome, mg, hw, mh, mp
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
gr.Markdown("""<h1><centre>Machine Generated Text (MGT) Detection</center></h1>""")
|
230 |
with gr.Tab('Try it!'):
|
|
|
231 |
|
232 |
with gr.Row():
|
233 |
-
radio_button = gr.Dropdown(['Student Essay', 'Scientific Abstract'], label = 'Text Type', info = 'We have specialized models that work on domain-specific text.', value='Student Essay')
|
234 |
-
|
235 |
-
with gr.Row():
|
236 |
-
|
237 |
input_text = gr.Textbox(placeholder="Paste your text here...", label="Text", lines=10, max_lines=15)
|
238 |
-
file_input = gr.File(label="Upload File", file_types=[".txt", ".pdf"])
|
239 |
|
240 |
with gr.Row():
|
241 |
wc = gr.Markdown("0/500 words (Minimum 50 words)")
|
242 |
with gr.Row():
|
243 |
check_button = gr.Button("Check Origin", variant="primary", interactive=False)
|
244 |
-
clear_button = gr.ClearButton([input_text
|
245 |
|
246 |
out = gr.Label(label='Result')
|
247 |
clear_button.add(out)
|
248 |
|
249 |
-
check_button.click(fn=update_detection_tab, inputs=[input_text
|
250 |
|
251 |
input_text.change(count_words_detection_tab, input_text, wc, show_progress=False)
|
252 |
input_text.input(
|
253 |
active_button_detection_tab,
|
254 |
-
[input_text
|
255 |
[check_button],
|
256 |
)
|
257 |
|
258 |
-
file_input.upload(
|
259 |
-
active_button_detection_tab,
|
260 |
-
[input_text, file_input],
|
261 |
-
[check_button],
|
262 |
-
)
|
263 |
-
|
264 |
clear_button.click(
|
265 |
clear_detection_tab,
|
266 |
inputs=[],
|
267 |
-
outputs=[input_text,
|
268 |
-
)
|
269 |
-
|
270 |
-
|
271 |
-
# Adding JavaScript to simulate file input click
|
272 |
-
gr.Markdown(
|
273 |
-
"""
|
274 |
-
<script>
|
275 |
-
document.addEventListener("DOMContentLoaded", function() {
|
276 |
-
const uploadButton = Array.from(document.getElementsByTagName('button')).find(el => el.innerText === "Upload File");
|
277 |
-
if (uploadButton) {
|
278 |
-
uploadButton.onclick = function() {
|
279 |
-
document.querySelector('input[type="file"]').click();
|
280 |
-
};
|
281 |
-
}
|
282 |
-
});
|
283 |
-
</script>
|
284 |
-
"""
|
285 |
)
|
286 |
|
287 |
with gr.Tab('Challenge Yourself!'):
|
288 |
-
gr.Markdown(
|
289 |
-
"""
|
290 |
-
<style>
|
291 |
-
.gr-button-secondary {
|
292 |
-
width: 100px;
|
293 |
-
height: 30px;
|
294 |
-
padding: 5px;
|
295 |
-
}
|
296 |
-
.gr-row {
|
297 |
-
display: flex;
|
298 |
-
align-items: center;
|
299 |
-
gap: 10px;
|
300 |
-
}
|
301 |
-
.gr-block {
|
302 |
-
padding: 20px;
|
303 |
-
}
|
304 |
-
.gr-markdown p {
|
305 |
-
font-size: 16px;
|
306 |
-
}
|
307 |
-
</style>
|
308 |
-
<span style='font-family: Arial, sans-serif; font-size: 20px;'>Was this text written by <strong>human</strong> or <strong>AI</strong>?</span>
|
309 |
-
<p style='font-family: Arial, sans-serif;'>Try detecting one of our sample texts:</p>
|
310 |
-
"""
|
311 |
-
)
|
312 |
-
|
313 |
-
|
314 |
with gr.Row():
|
315 |
generate = gr.Button("Generate Sample Text", variant="primary")
|
316 |
clear = gr.ClearButton([], variant="stop")
|
@@ -319,7 +199,6 @@ with gr.Blocks() as demo:
|
|
319 |
text = gr.Textbox(value="", label="Text", lines=20, interactive=False)
|
320 |
|
321 |
with gr.Row():
|
322 |
-
|
323 |
mg = gr.Button("Machine-Generated", variant="secondary", interactive=False)
|
324 |
hw = gr.Button("Human-Written", variant="secondary", interactive=False)
|
325 |
mh = gr.Button("Machine-Humanized", variant="secondary", interactive=False)
|
@@ -333,8 +212,12 @@ with gr.Blocks() as demo:
|
|
333 |
for button in [mg, hw, mh, mp]:
|
334 |
button.click(show_result_challenge_tab, [button], [result, mg, hw, mh, mp])
|
335 |
|
336 |
-
clear.click(
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
demo.launch(share=False)
|
340 |
-
|
|
|
|
|
|
|
|
|
1 |
import json
|
|
|
2 |
import random
|
3 |
+
from pathlib import Path
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
7 |
|
8 |
+
# Constants
|
9 |
+
MIN_WORDS = 50
|
10 |
+
MAX_WORDS = 500
|
11 |
+
SAMPLE_JSON_PATH = Path('samples.json')
|
|
|
12 |
|
13 |
+
# Load models
|
14 |
+
def load_model(model_name):
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
17 |
+
return pipeline('text-classification', model=model, tokenizer=tokenizer, truncation=True, max_length=512, top_k=4)
|
18 |
|
19 |
+
classifier = load_model("./fine-tuned-distillberta")
|
20 |
|
21 |
+
# Load sample essays
|
22 |
+
with open(SAMPLE_JSON_PATH, 'r') as f:
|
23 |
+
demo_essays = json.load(f)
|
24 |
|
25 |
+
# Global variable to store the current essay index
|
26 |
+
current_essay_index = None
|
27 |
|
28 |
+
TEXT_CLASS_MAPPING = {
|
29 |
+
'llm': 'Machine Generated',
|
30 |
+
'human': 'Human Written',
|
31 |
+
'machine-humanized': 'Machine Written, Machine Humanized',
|
32 |
+
'machine-polished': 'Human Written, Machine Polished'
|
33 |
+
}
|
34 |
|
35 |
def process_result_detection_tab(text):
|
36 |
+
|
37 |
+
result = classifier(text)[0]
|
38 |
+
|
39 |
+
labels = [TEXT_CLASS_MAPPING[x['label']] for x in result]
|
40 |
+
scores = list(np.array([x['score'] for x in result]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
final_results = dict(zip(labels, scores))
|
43 |
+
|
44 |
+
# Return only the label with the highest score
|
45 |
+
return max(final_results, key=final_results.get)
|
46 |
+
|
47 |
+
def update_detection_tab(name):
|
48 |
+
if name == '':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
return ""
|
50 |
+
return process_result_detection_tab(name)
|
|
|
|
|
|
|
51 |
|
52 |
+
def active_button_detection_tab(input_text):
|
53 |
+
if not (50 <= len(input_text.split()) <= 500):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
return gr.Button("Check Origin", variant="primary", interactive=False)
|
|
|
55 |
return gr.Button("Check Origin", variant="primary", interactive=True)
|
56 |
|
57 |
def clear_detection_tab():
|
58 |
+
return "", gr.Button("Check Origin", variant="primary", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
def count_words_detection_tab(text):
|
61 |
+
return f'{len(text.split())}/500 words (Minimum 50 words)'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
def generate_text_challenge_tab():
|
64 |
+
global index
|
65 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
mg = gr.Button("Machine-Generated", variant="secondary", interactive=True)
|
67 |
hw = gr.Button("Human-Written", variant="secondary", interactive=True)
|
68 |
+
mh = gr.Button("Machine-Humanized", variant="secondary", interactive=True)
|
69 |
mp = gr.Button("Machine-Polished", variant="secondary", interactive=True)
|
70 |
+
|
71 |
index = random.choice(range(80))
|
72 |
essay = demo_essays[index][0]
|
73 |
return essay, mg, hw, mh, mp, ''
|
74 |
|
75 |
def correct_label_challenge_tab():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
if 0 <= index < 20 :
|
77 |
return 'Human-Written'
|
78 |
elif 20 <= index < 40:
|
|
|
83 |
return 'Machine-Humanized'
|
84 |
|
85 |
def show_result_challenge_tab(button):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
correct_btn = correct_label_challenge_tab()
|
87 |
mg = gr.Button("Machine-Generated", variant="secondary")
|
88 |
hw = gr.Button("Human-Written", variant="secondary")
|
|
|
107 |
elif correct_btn == 'Machine-Polished':
|
108 |
mp = gr.Button("Machine-Polished", variant="primary")
|
109 |
|
110 |
+
outcome = 'Correct' if button == correct_btn else 'Incorrect'
|
|
|
|
|
|
|
|
|
111 |
|
112 |
return outcome, mg, hw, mh, mp
|
113 |
|
114 |
+
css = """
|
115 |
+
body, .gradio-container {
|
116 |
+
font-family: Arial, sans-serif;
|
117 |
+
}
|
118 |
+
.gr-button {
|
119 |
+
background-color: #1e1e1e;
|
120 |
+
border: 1px solid #333333;
|
121 |
+
color: #ffffff;
|
122 |
+
}
|
123 |
+
.gr-button:hover {
|
124 |
+
background-color: #2e2e2e;
|
125 |
+
}
|
126 |
+
.gr-input, .gr-textarea {
|
127 |
+
background-color: #1f2937;
|
128 |
+
border: 1px solid #333333;
|
129 |
+
color: #ffffff;
|
130 |
+
}
|
131 |
+
.gr-form {
|
132 |
+
background-color: #1f2937;
|
133 |
+
border: 1px solid #333333;
|
134 |
+
}
|
135 |
+
.class-intro {
|
136 |
+
background-color: #1f2937;
|
137 |
+
border: 1px solid #333333;
|
138 |
+
padding: 15px;
|
139 |
+
margin-bottom: 20px;
|
140 |
+
border-radius: 5px;
|
141 |
+
}
|
142 |
+
.class-intro h2 {
|
143 |
+
margin-top: 0;
|
144 |
+
color: #ffffff;
|
145 |
+
}
|
146 |
+
.class-intro p {
|
147 |
+
margin-bottom: 5px;
|
148 |
+
}
|
149 |
+
"""
|
150 |
+
|
151 |
+
class_intro_html = """
|
152 |
+
<div class="class-intro">
|
153 |
+
<h2>Text Classes</h2>
|
154 |
+
<p><strong>Human Written:</strong> Original text created by humans.</p>
|
155 |
+
<p><strong>Machine Generated:</strong> Text created by AI from basic prompts, without style instructions.</p>
|
156 |
+
<p><strong>Human Written, Machine Polished:</strong> Human text refined by AI for grammar and flow, without new content.</p>
|
157 |
+
<p><strong>Machine Written, Machine Humanized:</strong> AI-generated text modified to mimic human writing style.</p>
|
158 |
+
</div>
|
159 |
+
"""
|
160 |
+
|
161 |
+
with gr.Blocks(css=css) as demo:
|
162 |
gr.Markdown("""<h1><centre>Machine Generated Text (MGT) Detection</center></h1>""")
|
163 |
with gr.Tab('Try it!'):
|
164 |
+
gr.HTML(class_intro_html)
|
165 |
|
166 |
with gr.Row():
|
|
|
|
|
|
|
|
|
167 |
input_text = gr.Textbox(placeholder="Paste your text here...", label="Text", lines=10, max_lines=15)
|
|
|
168 |
|
169 |
with gr.Row():
|
170 |
wc = gr.Markdown("0/500 words (Minimum 50 words)")
|
171 |
with gr.Row():
|
172 |
check_button = gr.Button("Check Origin", variant="primary", interactive=False)
|
173 |
+
clear_button = gr.ClearButton([input_text], variant="stop")
|
174 |
|
175 |
out = gr.Label(label='Result')
|
176 |
clear_button.add(out)
|
177 |
|
178 |
+
check_button.click(fn=update_detection_tab, inputs=[input_text], outputs=out)
|
179 |
|
180 |
input_text.change(count_words_detection_tab, input_text, wc, show_progress=False)
|
181 |
input_text.input(
|
182 |
active_button_detection_tab,
|
183 |
+
[input_text],
|
184 |
[check_button],
|
185 |
)
|
186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
clear_button.click(
|
188 |
clear_detection_tab,
|
189 |
inputs=[],
|
190 |
+
outputs=[input_text, check_button],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
)
|
192 |
|
193 |
with gr.Tab('Challenge Yourself!'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
with gr.Row():
|
195 |
generate = gr.Button("Generate Sample Text", variant="primary")
|
196 |
clear = gr.ClearButton([], variant="stop")
|
|
|
199 |
text = gr.Textbox(value="", label="Text", lines=20, interactive=False)
|
200 |
|
201 |
with gr.Row():
|
|
|
202 |
mg = gr.Button("Machine-Generated", variant="secondary", interactive=False)
|
203 |
hw = gr.Button("Human-Written", variant="secondary", interactive=False)
|
204 |
mh = gr.Button("Machine-Humanized", variant="secondary", interactive=False)
|
|
|
212 |
for button in [mg, hw, mh, mp]:
|
213 |
button.click(show_result_challenge_tab, [button], [result, mg, hw, mh, mp])
|
214 |
|
215 |
+
clear.click(lambda: ("",
|
216 |
+
gr.Button("Machine-Generated", variant="secondary", interactive=False),
|
217 |
+
gr.Button("Human-Written", variant="secondary", interactive=False),
|
218 |
+
gr.Button("Machine-Humanized", variant="secondary", interactive=False),
|
219 |
+
gr.Button("Machine-Polished", variant="secondary", interactive=False),
|
220 |
+
""),
|
221 |
+
outputs=[text, mg, hw, mh, mp, result])
|
222 |
|
223 |
demo.launch(share=False)
|
|