raj-tomar001 commited on
Commit
f21a673
·
verified ·
1 Parent(s): 4b7ea1a

uploaded app.py

Browse files
Files changed (1) hide show
  1. app.py +111 -0
app.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import DebertaTokenizer, DebertaForSequenceClassification
3
+ from transformers import pipeline
4
+
5
+ save_path_abstract = '/home/raj.tomar/Downloads/MGT/experiments/fine-tuned-deberta/'
6
+ model_abstract = DebertaForSequenceClassification.from_pretrained(save_path_abstract)
7
+ tokenizer_abstract = DebertaTokenizer.from_pretrained(save_path_abstract)
8
+
9
+ classifier_abstract = pipeline('text-classification', model=model_abstract, tokenizer=tokenizer_abstract)
10
+
11
+ save_path_essay = '/home/raj.tomar/Downloads/MGT/experiments/fine-tuned-deberta/'
12
+ model_essay = DebertaForSequenceClassification.from_pretrained(save_path_essay)
13
+ tokenizer_essay = DebertaTokenizer.from_pretrained(save_path_essay)
14
+
15
+ classifier_essay = pipeline('text-classification', model=model_essay, tokenizer=tokenizer_essay)
16
+
17
+ def update(name, uploaded_file, radio_input):
18
+ if uploaded_file is not None:
19
+ return f"{name}, you uploaded a file named {uploaded_file.name}."
20
+ else:
21
+ if radio_input == 'Scientific Abstract':
22
+ data = classifier_abstract(name)[0]['label']
23
+ if data == 'LABEL_0':
24
+ return "human_text"
25
+ if data == 'LABEL_1':
26
+ return "machine_text"
27
+ if data == 'LABEL_2':
28
+ return "human-written | machine-polished"
29
+ if data == 'LABEL_3':
30
+ return "machine-generated | machine-humanized"
31
+ else:
32
+ if radio_input == 'Student Essay':
33
+ data = classifier_essay(name)[0]['label']
34
+ if data == 'LABEL_0':
35
+ return "human_text"
36
+ if data == 'LABEL_1':
37
+ return "machine_text"
38
+ if data == 'LABEL_2':
39
+ return "human-written | machine-polished"
40
+ if data == 'LABEL_3':
41
+ return "machine-generated | machine-humanized"
42
+ # return "Hold on!"
43
+
44
+ with gr.Blocks() as demo:
45
+ gr.Markdown(
46
+ """
47
+ <style>
48
+ .gr-button-secondary {
49
+ width: 100px;
50
+ height: 30px;
51
+ padding: 5px;
52
+ }
53
+ .gr-row {
54
+ display: flex;
55
+ align-items: center;
56
+ gap: 10px;
57
+ }
58
+ .gr-block {
59
+ padding: 20px;
60
+ }
61
+ .gr-markdown p {
62
+ font-size: 16px;
63
+ }
64
+ </style>
65
+ <span style='font-family: Arial, sans-serif; font-size: 20px;'>Was this text written by <strong>human</strong> or <strong>AI</strong>?</span>
66
+ <p style='font-family: Arial, sans-serif;'>Try detecting one of our sample texts:</p>
67
+ """
68
+ )
69
+
70
+ with gr.Row():
71
+ for sample in ["Machine-Generated", "Human-Written", "Machine-Humanized", "Machine - Polished"]:
72
+ gr.Button(sample, variant="outline")
73
+
74
+ with gr.Row():
75
+ radio_button = gr.Radio(['Scientific Abstract', 'Student Essay'], label = 'Text Type', info = 'We have specialized models that work on domain-specific text.')
76
+
77
+ with gr.Row():
78
+ input_text = gr.Textbox(placeholder="Paste your text here...", label="", lines=10)
79
+ file_input = gr.File(label="Upload File")
80
+
81
+ #file_input = gr.File(label="", visible=False) # Hide the actual file input
82
+
83
+ with gr.Row():
84
+ check_button = gr.Button("Check Origin", variant="primary")
85
+ clear_button = gr.ClearButton([input_text, file_input, radio_button], variant='stop')
86
+ #upload_button = gr.Button("Upload File", variant="secondary")
87
+
88
+ out = gr.Textbox(label="OUTPUT", placeholder="", lines=2)
89
+ clear_button.add(out)
90
+
91
+ check_button.click(fn=update, inputs=[input_text, file_input, radio_button], outputs=out)
92
+ #upload_button.click(lambda: None, inputs=[], outputs=[]).then(fn=update, inputs=[input_text, file_input], outputs=out)
93
+
94
+ # Adding JavaScript to simulate file input click
95
+ gr.Markdown(
96
+ """
97
+ <script>
98
+ document.addEventListener("DOMContentLoaded", function() {
99
+ const uploadButton = Array.from(document.getElementsByTagName('button')).find(el => el.innerText === "Upload File");
100
+ if (uploadButton) {
101
+ uploadButton.onclick = function() {
102
+ document.querySelector('input[type="file"]').click();
103
+ };
104
+ }
105
+ });
106
+ </script>
107
+ """
108
+ )
109
+
110
+ demo.launch(share=True)
111
+