Spaces:
Sleeping
Sleeping
File size: 49,718 Bytes
49925e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 64,
"id": "029e3b0a",
"metadata": {},
"outputs": [],
"source": [
"from os import listdir\n",
"from pickle import dump\n",
"from keras.applications.vgg16 import VGG16, preprocess_input\n",
"from tensorflow.keras.preprocessing.image import img_to_array, load_img\n",
"from keras.models import Model"
]
},
{
"cell_type": "code",
"execution_count": 299,
"id": "bec9f820",
"metadata": {},
"outputs": [],
"source": [
"# extract feature from each photo in directory\n",
"def extract_feature(directory):\n",
" model = VGG16()\n",
" #restructure model, here we remove last softmax layer from this model\n",
" model.layers.pop\n",
" model = Model(inputs=model.inputs, outputs=model.layers[-1].output)\n",
" print(model.summary)\n",
" \n",
" #extract feature from each photo\n",
" feature = dict()\n",
" for name in listdir(directory):\n",
" filename = directory + '/' + name\n",
" image = load_img(filename, target_size=(224,224))\n",
" #convert img pixels to numpy array\n",
" image = img_to_array(image)\n",
" #reshape data for the model\n",
" image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))\n",
" #preprocess img for preprocess model\n",
" image = preprocess_input(image)\n",
" #get features\n",
" features = model.predict(image, verbose=0)\n",
" #get img id\n",
" img_id = name.split('.')[0]\n",
" #storing features\n",
" feature[img_id] = features\n",
" print(\">%s\" % name)\n",
" return feature"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "035ed4b2",
"metadata": {},
"outputs": [],
"source": [
"directory = \"img_captioning_dataset/Images\"\n",
"features = extract_feature(directory)\n",
"# print(\"Extracted Features: %d\" %len(features))\n",
"# dump(features, open('img_captioning_features/features.pkl', 'wb'))"
]
},
{
"cell_type": "code",
"execution_count": 385,
"id": "89135fbf",
"metadata": {},
"outputs": [],
"source": [
"import string\n",
"from nltk.tokenize import word_tokenize\n",
"\n",
"def load_doc(filename):\n",
" # open the file as read only\n",
" file = open(filename, 'r')\n",
" # read all text\n",
" text = file.read()\n",
" # close the file\n",
" file.close()\n",
" return text\n",
"\n",
"#extract description of image\n",
"def load_description(doc):\n",
" mapping = dict()\n",
" for line in doc.split('\\n'):\n",
" token = word_tokenize(line)\n",
" if len(line) < 2:\n",
" continue\n",
" image_id, image_desc = token[0], token[1:]\n",
" image_id = image_id.split('.')[0]\n",
" image_desc = ' '.join(image_desc)\n",
" if image_id not in mapping:\n",
" mapping[image_id] = list()\n",
" mapping[image_id].append(image_desc)\n",
" return mapping"
]
},
{
"cell_type": "code",
"execution_count": 386,
"id": "74ffda4f",
"metadata": {},
"outputs": [],
"source": [
"def clean_descriptions(descriptions):\n",
" # prepare translation table for removing punctuation\n",
" table = str.maketrans('', '', string.punctuation)\n",
" for key, desc_list in descriptions.items():\n",
" for i in range(len(desc_list)):\n",
" desc = desc_list[i]\n",
" # tokenize\n",
" desc = desc.split()\n",
" # convert to lower case\n",
" desc = [word.lower() for word in desc]\n",
" # remove punctuation from each token\n",
" desc = [w.translate(table) for w in desc]\n",
" # remove hanging 's' and 'a'\n",
" desc = [word for word in desc if len(word)>1]\n",
" # remove tokens with numbers in them\n",
" desc = [word for word in desc if word.isalpha()]\n",
" # store as string\n",
" desc_list[i] = ' '.join(desc)\n",
"def to_vocabulary(descriptions):\n",
" # build a list of all description strings\n",
" all_desc = set()\n",
" for key in descriptions.keys():\n",
" [all_desc.update(d.split()) for d in descriptions[key]]\n",
" return all_desc"
]
},
{
"cell_type": "code",
"execution_count": 387,
"id": "6ae0e204",
"metadata": {},
"outputs": [],
"source": [
"def save_descriptions(descriptions, filename):\n",
" lines = list()\n",
" for key, desc_list in descriptions.items():\n",
" for desc in desc_list:\n",
" lines.append(key + \" \" + desc)\n",
" data = '\\n'.join(lines)\n",
" file = open(filename, 'w')\n",
" file.write(data)\n",
" file.close()"
]
},
{
"cell_type": "code",
"execution_count": 388,
"id": "ad625117",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loaded: 8092\n"
]
}
],
"source": [
"filename = \"Flickr8k.token.txt\"\n",
"doc = load_doc(filename)\n",
"descriptions = load_description(doc)\n",
"print(\"Loaded: %d\" %len(descriptions))"
]
},
{
"cell_type": "code",
"execution_count": 389,
"id": "7b06b1b5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vocab size: 8761\n"
]
}
],
"source": [
"#clean desc\n",
"clean_descriptions(descriptions)\n",
"vocab = to_vocabulary(descriptions)\n",
"print(\"Vocab size: %d\" %len(vocab))"
]
},
{
"cell_type": "code",
"execution_count": 390,
"id": "c4c867ea",
"metadata": {},
"outputs": [],
"source": [
"save_descriptions(descriptions, \"another-way/descriptions1.txt\")"
]
},
{
"cell_type": "markdown",
"id": "d4079267",
"metadata": {},
"source": [
"### Extract Identifier"
]
},
{
"cell_type": "code",
"execution_count": 281,
"id": "898c84a0",
"metadata": {},
"outputs": [],
"source": [
"from pickle import dump"
]
},
{
"cell_type": "code",
"execution_count": 391,
"id": "dd687334",
"metadata": {},
"outputs": [],
"source": [
"#load into memory\n",
"def load_doc(filename):\n",
" with open(filename, 'r') as f:\n",
" content = f.read()\n",
" return content\n",
"#pre-defined list of photo identifier\n",
"def load_set(filename):\n",
" doc = load_doc(filename)\n",
" dataset = list()\n",
" for line in doc.split(\"\\n\"):\n",
" if len(line) < 1:\n",
" continue\n",
" identifier = line.split('.')[0]\n",
" dataset.append(identifier)\n",
" return set(dataset)"
]
},
{
"cell_type": "code",
"execution_count": 392,
"id": "2c612418",
"metadata": {},
"outputs": [],
"source": [
"def load_clean_descripitions(filename, dataset):\n",
" doc = load_doc(filename)\n",
" descriptions = dict()\n",
" for line in doc.split('\\n'):\n",
" tokens = word_tokenize(line)\n",
" image_id, image_desc = tokens[0], tokens[1:]\n",
" if image_id in dataset:\n",
" if image_id not in descriptions:\n",
" descriptions[image_id] = list()\n",
" #wrap description in token\n",
" desc = 'startseq ' + ' '.join(image_desc) + ' endseq'\n",
" descriptions[image_id].append(desc)\n",
" return descriptions"
]
},
{
"cell_type": "code",
"execution_count": 393,
"id": "4d22db3e",
"metadata": {},
"outputs": [],
"source": [
"def load_photo_features(features, dataset):\n",
" all_features = load(open(features, 'rb'))\n",
" features = {k: all_features[k] for k in dataset if k in all_features}\n",
" return features"
]
},
{
"cell_type": "code",
"execution_count": 394,
"id": "0c3a8e25",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dataset: 6000\n",
"Descriptions: train=6000\n",
"Photos: train=6000\n"
]
}
],
"source": [
"from pickle import load\n",
"\n",
"features = \"Flickr_8k.trainImages.txt\"\n",
"train = load_set(features)\n",
"print(\"dataset: %d\" %len(train))\n",
"train_descriptions = load_clean_descripitions(\"descriptions1.txt\", train)\n",
"print(\"Descriptions: train=%d\" %len(train_descriptions))\n",
"train_features = load_photo_features(\"features.pkl\", train)\n",
"print('Photos: train=%d' % len(train_features))"
]
},
{
"cell_type": "code",
"execution_count": 444,
"id": "437278aa",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'1191338263_a4fa073154': ['startseq little old lady sitting next to an advertisement endseq',\n",
" 'startseq an asian woman waiting at an underground train stop endseq',\n",
" 'startseq an old woman sits in transit station next to backlit advertisement endseq',\n",
" 'startseq woman sits in subway station endseq',\n",
" 'startseq woman with an umbrella is sitting at station with an aquos commercial on the wall endseq'],\n",
" '218342358_1755a9cce1': ['startseq cyclist wearing red helmet is riding on the pavement endseq',\n",
" 'startseq girl is riding bike on the street while wearing red helmet endseq',\n",
" 'startseq person on bike wearing red helmet riding down street endseq',\n",
" 'startseq woman wears red helmet and blue shirt as she goes for bike ride in the shade endseq',\n",
" 'startseq person in blue shirt and red helmet riding bike down the road endseq'],\n",
" '2187222896_c206d63396': ['startseq boy in red shirt in front of long blue wall raises his eyebrow at the camera endseq',\n",
" 'startseq boy in red shirt with stripes standing near blue brick wall with handicap signs endseq',\n",
" 'startseq an african american boy stands in front of blue building in the handicapped space endseq',\n",
" 'startseq the boy in the orange shirt looks backwards endseq',\n",
" 'startseq the boy in the red shirt is next to blue wall endseq'],\n",
" '2276499757_b44dc6f8ce': ['startseq dog looks warily at the brown dog investigating his area endseq',\n",
" 'startseq large brown dog is looking at medium sized black dog endseq',\n",
" 'startseq small black dog looks at larger brown dog in grassy field endseq',\n",
" 'startseq the big brown dog looks at the small black dog in tall grass endseq',\n",
" 'startseq there is big dog looking at little dog endseq'],\n",
" '2294598473_40637b5c04': ['startseq dog catches frisbee in midair endseq',\n",
" 'startseq dog catching frisbee endseq',\n",
" 'startseq terrier mix catches frisbee in the air endseq',\n",
" 'startseq white and black dog catching frisbee endseq',\n",
" 'startseq white dog is leaping in the air with green object in its mouth endseq'],\n",
" '2380765956_6313d8cae3': ['startseq blond girl wearing green jacket walks on trail along side metal fence endseq',\n",
" 'startseq girl in green coat walks down rural road playing flute endseq',\n",
" 'startseq young girl in parka playing flute while walking by fenced in field endseq',\n",
" 'startseq girl in green and blue jacket walking past an enclosed field endseq',\n",
" 'startseq girl playing flute as she walks by fence in rural area endseq'],\n",
" '2501968935_02f2cd8079': ['startseq man dressed in purple shirt and red bandanna smiles at the people watching him endseq',\n",
" 'startseq man on the street wearing leather chaps and chainmail codpiece endseq',\n",
" 'startseq man wearing purple shirt and black leather chaps poses for the camera endseq',\n",
" 'startseq man dressed in leather chaps and purple shirt stands in front of onlookers endseq',\n",
" 'startseq there is man in purple shirt leather chaps and red bandanna standing near other men endseq'],\n",
" '2506892928_7e79bec613': ['startseq three children in field with white flowers endseq',\n",
" 'startseq three children one with stuffed kitten in field of flowers endseq',\n",
" 'startseq three children play in the garden endseq',\n",
" 'startseq three children pose among wildflowers endseq',\n",
" 'startseq three kids palying with toy cat in garden endseq'],\n",
" '2513260012_03d33305cf': ['startseq black dog is running after white dog in the snow endseq',\n",
" 'startseq black dog chasing brown dog through snow endseq',\n",
" 'startseq two dogs chase each other across the snowy ground endseq',\n",
" 'startseq two dogs play together in the snow endseq',\n",
" 'startseq two dogs running through low lying body of water endseq'],\n",
" '2638369467_8fc251595b': ['startseq girl in white dress endseq',\n",
" 'startseq little girl in white is looking back at the camera while carrying water grenade endseq',\n",
" 'startseq smiling young girl in braids is playing ball endseq',\n",
" 'startseq young girl wearing white looks at the camera as she plays endseq',\n",
" 'startseq the girl is holding green ball endseq'],\n",
" '2644326817_8f45080b87': ['startseq black and white dog with red frisbee standing on sandy beach endseq',\n",
" 'startseq dog drops red disc on beach endseq',\n",
" 'startseq dog with red frisbee flying in the air endseq',\n",
" 'startseq dog catching red frisbee endseq',\n",
" 'startseq the black dog is dropping red disc on beach endseq'],\n",
" '2699342860_5288e203ea': ['startseq boy wearing red tshirt is running through woodland endseq',\n",
" 'startseq child runs near some trees endseq',\n",
" 'startseq young boy is dancing around endseq',\n",
" 'startseq young boy with red short sleeved shirt and jeans runs by some trees endseq',\n",
" 'startseq the little boy in the red shirt stops to smile for the camera endseq'],\n",
" '2851304910_b5721199bc': ['startseq photographer looks over the hills endseq',\n",
" 'startseq woman in red jacket is videotaping natural landscape endseq',\n",
" 'startseq woman with camera looks out over rolling hills endseq',\n",
" 'startseq woman with camera on tripod is looking at the view endseq',\n",
" 'startseq lady in red shirt has her camera set up in the field to record something endseq'],\n",
" '2903617548_d3e38d7f88': ['startseq little baby plays croquet endseq',\n",
" 'startseq little girl plays croquet next to truck endseq',\n",
" 'startseq the child is playing croquette by the truck endseq',\n",
" 'startseq the kid is in front of car with put and ball endseq',\n",
" 'startseq the little boy is playing with croquet hammer and ball beside the car endseq'],\n",
" '2926786902_815a99a154': ['startseq skier in yellow jacket is airborne above the mountains endseq',\n",
" 'startseq skier jumps high in the air with view of the mountains endseq',\n",
" 'startseq skiing man in fluorescent jacket jumps very high and it looks as though he is flying endseq',\n",
" 'startseq somone is high in the air doing ski jump endseq',\n",
" 'startseq the skier in the green jacket and white pants appears to almost fly into the sky endseq'],\n",
" '3119887967_271a097464': ['startseq man in sweater pointing at the camera endseq',\n",
" 'startseq one man is posing with arms outstretched and finger pointed while another stares from behind him endseq',\n",
" 'startseq the man in the black hat stands behind the man who is pointing his finger endseq',\n",
" 'startseq two men look toward the camera while the one in front points his index finger endseq',\n",
" 'startseq two men one wearing black hat while the one in front points standing in hallway endseq'],\n",
" '3197891333_b1b0fd1702': ['startseq family of nine people including four children pose in front of brick fireplace with white mantle endseq',\n",
" 'startseq family poses in front of the fireplace and christmas tree endseq',\n",
" 'startseq family posing by the mantle and christmas tree endseq',\n",
" 'startseq happy family poses by the fireplace endseq',\n",
" 'startseq two couples and four kids pose for family picture endseq'],\n",
" '3338291921_fe7ae0c8f8': ['startseq brown dog in the snow has something hot pink in its mouth endseq',\n",
" 'startseq brown dog in the snow holding pink hat endseq',\n",
" 'startseq brown dog is holding pink shirt in the snow endseq',\n",
" 'startseq dog is carrying something pink in its mouth while walking through the snow endseq',\n",
" 'startseq dog with something pink in its mouth is looking forward endseq'],\n",
" '3356369156_074750c6cc': ['startseq blue boat with yellow canopy is floating on calm waters endseq',\n",
" 'startseq boat in the water endseq',\n",
" 'startseq boat with roof on green water endseq',\n",
" 'startseq the boat is in the middle of the water endseq',\n",
" 'startseq the solitude boat floats on the lake endseq'],\n",
" '3423802527_94bd2b23b0': ['startseq bunch of girls in cheerleader outfits endseq',\n",
" 'startseq large group of cheerleaders walking in parade endseq',\n",
" 'startseq cheerleaders perform endseq',\n",
" 'startseq many cheerleaders wearing black walk down the street endseq',\n",
" 'startseq parade of cheerleaders wearing black pink and white uniforms endseq'],\n",
" '488416045_1c6d903fe0': ['startseq brown dog is running along beach endseq',\n",
" 'startseq brown dog wearing black collar running across the beach endseq',\n",
" 'startseq dog walks on the sand near the water endseq',\n",
" 'startseq brown dog running on the beach endseq',\n",
" 'startseq the large brown dog is running on the beach by the ocean endseq']}"
]
},
"execution_count": 444,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_descriptions"
]
},
{
"cell_type": "markdown",
"id": "b80bb437",
"metadata": {},
"source": [
"### Now going to use keras tokenizer to change text to numeric form"
]
},
{
"cell_type": "code",
"execution_count": 396,
"id": "c7e2130c",
"metadata": {},
"outputs": [],
"source": [
"# dict to clean list\n",
"def to_lines(descriptions):\n",
" all_desc = list()\n",
" for key in descriptions.keys():\n",
" [all_desc.append(d) for d in descriptions[key]]\n",
" return all_desc"
]
},
{
"cell_type": "code",
"execution_count": 397,
"id": "a91092cf",
"metadata": {},
"outputs": [],
"source": [
"def create_tokenizer(descriptions):\n",
" lines = to_lines(descriptions)\n",
" tokenizer = Tokenizer()\n",
" tokenizer.fit_on_texts(lines)\n",
" return tokenizer"
]
},
{
"cell_type": "code",
"execution_count": 398,
"id": "69996870",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vocabulary Size: 7577\n"
]
}
],
"source": [
"tokenizer = create_tokenizer(train_descriptions)\n",
"vocab_size = len(tokenizer.word_index) + 1\n",
"print('Vocabulary Size: %d' % vocab_size)"
]
},
{
"cell_type": "code",
"execution_count": 399,
"id": "9f0b5246",
"metadata": {},
"outputs": [],
"source": [
"#len of description\n",
"def max_length(description):\n",
" lines = to_lines(description)\n",
" return max(len(d.split()) for d in lines)"
]
},
{
"cell_type": "code",
"execution_count": 462,
"id": "191d71d6",
"metadata": {},
"outputs": [],
"source": [
"# create input and output sequence\n",
"def create_sequences(tokenizer, max_length, desc_list, photo):\n",
" X1, X2, y = list(), list(), list()\n",
" # walk through each description for the image\n",
" for desc in desc_list:\n",
" # encode the sequence\n",
" seq = tokenizer.texts_to_sequences([desc])[0]\n",
" # split one sequence into multiple X,y pairs\n",
" for i in range(1, len(seq)):\n",
" # split into input and output pair\n",
" in_seq, out_seq = seq[:i], seq[i]\n",
" # pad input sequence\n",
" in_seq = pad_sequences([in_seq], maxlen=max_length)[0]\n",
" # encode output sequence\n",
" out_seq = to_categorical([out_seq], num_classes=vocab_size)[0]\n",
" # store\n",
" X1.append(photo)\n",
" X2.append(in_seq)\n",
" y.append(out_seq)\n",
" return array(X1), array(X2), array(y)"
]
},
{
"cell_type": "code",
"execution_count": 401,
"id": "4e3e04fa",
"metadata": {},
"outputs": [],
"source": [
"from numpy import array\n",
"from tensorflow.keras.preprocessing.text import Tokenizer\n",
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
"from tensorflow.keras.utils import to_categorical, plot_model\n",
"from keras.models import Model\n",
"from keras.layers import Input, Dense, Activation, Dropout, Embedding,LSTM, Bidirectional, BatchNormalization\n",
"from keras.layers.merging import add\n",
"from keras.callbacks import ModelCheckpoint"
]
},
{
"cell_type": "markdown",
"id": "45c2cfe9",
"metadata": {},
"source": [
"### Model creation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "93f8f578",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 467,
"id": "22c7799b",
"metadata": {},
"outputs": [],
"source": [
"def define_model(vocab_size, max_length):\n",
" # feature extractor model\n",
" inputs1 = Input(shape=(1000,))\n",
" fe1 = Dropout(0.5)(inputs1)\n",
" fe2 = Dense(256, activation='relu')(fe1)\n",
" # sequence model\n",
" inputs2 = Input(shape=(max_length,))\n",
" se1 = Embedding(vocab_size,output_dim=256, mask_zero=True)(inputs2)\n",
" se2 = Dropout(0.5)(se1)\n",
" se3 = LSTM(256)(se2)\n",
" # decoder model\n",
" decoder1 = concatenate([fe2, se3])\n",
" decoder2 = Dense(256, activation='relu')(decoder1)\n",
" outputs = Dense(vocab_size, activation='softmax')(decoder2)\n",
" # tie it together [image, seq] [word]\n",
" model = Model(inputs=[inputs1, inputs2], outputs=outputs)\n",
" model.compile(loss='categorical_crossentropy', optimizer='adam')\n",
" # summarize model\n",
" print(model.summary())\n",
" return model"
]
},
{
"cell_type": "code",
"execution_count": 463,
"id": "6ad11b1d",
"metadata": {},
"outputs": [],
"source": [
"# load batch of data\n",
"def data_generator(descriptions, photos, tokenizer, max_length):\n",
" # loop for ever over images\n",
" while 1:\n",
" for key, desc_list in descriptions.items():\n",
" # retrieve the photo feature\n",
" photo = photos[key][0]\n",
" in_img, in_seq, out_word = create_sequences(tokenizer, max_length, desc_list, photo)\n",
" yield [[in_img, in_seq], out_word]"
]
},
{
"cell_type": "code",
"execution_count": 464,
"id": "a999a0db",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset: 6000\n",
"train_descriptions= 6000\n",
"photos: train= 6000\n",
"Vocab size: 7577\n",
"Description Length: 34\n"
]
}
],
"source": [
"#load train dataset\n",
"import tensorflow as tf\n",
"filename = \"Flickr_8k.trainImages.txt\"\n",
"train = load_set(filename)\n",
"print(\"Dataset: %d\" %len(train))\n",
"\n",
"train_descriptions = load_clean_descripitions(\"descriptions1.txt\", train)\n",
"print(\"train_descriptions= %d\" %len(train_descriptions))\n",
"\n",
"train_feature = load_photo_features(\"features.pkl\", train)\n",
"print(\"photos: train= %d\" %len(train_feature))\n",
"\n",
"tokenizer = create_tokenizer(train_descriptions)\n",
"vocab_size = len(tokenizer.word_index)+1\n",
"print(\"Vocab size: %d\" %vocab_size)\n",
"\n",
"max_len = max_length(train_descriptions)\n",
"print('Description Length: %d' % max_len)"
]
},
{
"cell_type": "code",
"execution_count": 468,
"id": "9936fc7f",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"model_47\"\n",
"__________________________________________________________________________________________________\n",
" Layer (type) Output Shape Param # Connected to \n",
"==================================================================================================\n",
" input_121 (InputLayer) [(None, 34)] 0 [] \n",
" \n",
" input_120 (InputLayer) [(None, 1000)] 0 [] \n",
" \n",
" embedding_52 (Embedding) (None, 34, 256) 1939712 ['input_121[0][0]'] \n",
" \n",
" dropout_109 (Dropout) (None, 1000) 0 ['input_120[0][0]'] \n",
" \n",
" dropout_110 (Dropout) (None, 34, 256) 0 ['embedding_52[0][0]'] \n",
" \n",
" dense_151 (Dense) (None, 256) 256256 ['dropout_109[0][0]'] \n",
" \n",
" lstm_52 (LSTM) (None, 256) 525312 ['dropout_110[0][0]'] \n",
" \n",
" concatenate_8 (Concatenate) (None, 512) 0 ['dense_151[0][0]', \n",
" 'lstm_52[0][0]'] \n",
" \n",
" dense_152 (Dense) (None, 256) 131328 ['concatenate_8[0][0]'] \n",
" \n",
" dense_153 (Dense) (None, 7577) 1947289 ['dense_152[0][0]'] \n",
" \n",
"==================================================================================================\n",
"Total params: 4,799,897\n",
"Trainable params: 4,799,897\n",
"Non-trainable params: 0\n",
"__________________________________________________________________________________________________\n",
"None\n"
]
}
],
"source": [
"#train model\n",
"model = define_model(vocab_size, max_len)\n",
"epochs = 10\n",
"steps = len(train_descriptions)"
]
},
{
"cell_type": "code",
"execution_count": 469,
"id": "6d10533f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 514/6000 [=>............................] - ETA: 25:52 - loss: 5.8238"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[469], line 4\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(epochs):\n\u001b[0;32m 2\u001b[0m \u001b[38;5;66;03m#create data generator\u001b[39;00m\n\u001b[0;32m 3\u001b[0m generator \u001b[38;5;241m=\u001b[39m data_generator(train_descriptions, train_feature, tokenizer, max_len)\n\u001b[1;32m----> 4\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgenerator\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msteps_per_epoch\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43msteps\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mverbose\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 5\u001b[0m model\u001b[38;5;241m.\u001b[39msave(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel_\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mstr\u001b[39m(i) \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mh5\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"File \u001b[1;32m~\\miniconda3\\lib\\site-packages\\keras\\utils\\traceback_utils.py:65\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 63\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 64\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 65\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 66\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 67\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n",
"File \u001b[1;32m~\\miniconda3\\lib\\site-packages\\keras\\engine\\training.py:1685\u001b[0m, in \u001b[0;36mModel.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1677\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m tf\u001b[38;5;241m.\u001b[39mprofiler\u001b[38;5;241m.\u001b[39mexperimental\u001b[38;5;241m.\u001b[39mTrace(\n\u001b[0;32m 1678\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtrain\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 1679\u001b[0m epoch_num\u001b[38;5;241m=\u001b[39mepoch,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1682\u001b[0m _r\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m,\n\u001b[0;32m 1683\u001b[0m ):\n\u001b[0;32m 1684\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m-> 1685\u001b[0m tmp_logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1686\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data_handler\u001b[38;5;241m.\u001b[39mshould_sync:\n\u001b[0;32m 1687\u001b[0m context\u001b[38;5;241m.\u001b[39masync_wait()\n",
"File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python310\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n",
"File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python310\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:894\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 891\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 893\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 894\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 896\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 897\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n",
"File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python310\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:926\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 923\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m 924\u001b[0m \u001b[38;5;66;03m# In this case we have created variables on the first call, so we run the\u001b[39;00m\n\u001b[0;32m 925\u001b[0m \u001b[38;5;66;03m# defunned version which is guaranteed to never create variables.\u001b[39;00m\n\u001b[1;32m--> 926\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_no_variable_creation_fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds) \u001b[38;5;66;03m# pylint: disable=not-callable\u001b[39;00m\n\u001b[0;32m 927\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_variable_creation_fn \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 928\u001b[0m \u001b[38;5;66;03m# Release the lock early so that multiple threads can perform the call\u001b[39;00m\n\u001b[0;32m 929\u001b[0m \u001b[38;5;66;03m# in parallel.\u001b[39;00m\n\u001b[0;32m 930\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n",
"File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python310\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compiler.py:143\u001b[0m, in \u001b[0;36mTracingCompiler.__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 140\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock:\n\u001b[0;32m 141\u001b[0m (concrete_function,\n\u001b[0;32m 142\u001b[0m filtered_flat_args) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_maybe_define_function(args, kwargs)\n\u001b[1;32m--> 143\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mconcrete_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 144\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiltered_flat_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconcrete_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python310\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\monomorphic_function.py:1757\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[0;32m 1753\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1754\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1755\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1756\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1757\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_call_outputs(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1758\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcancellation_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcancellation_manager\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[0;32m 1759\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1760\u001b[0m args,\n\u001b[0;32m 1761\u001b[0m possible_gradient_type,\n\u001b[0;32m 1762\u001b[0m executing_eagerly)\n\u001b[0;32m 1763\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n",
"File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python310\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\monomorphic_function.py:381\u001b[0m, in \u001b[0;36m_EagerDefinedFunction.call\u001b[1;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[0;32m 379\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m _InterpolateFunctionError(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m 380\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 381\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 382\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mstr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msignature\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 383\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_num_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 384\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 385\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 386\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mctx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 387\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 388\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 389\u001b[0m \u001b[38;5;28mstr\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msignature\u001b[38;5;241m.\u001b[39mname),\n\u001b[0;32m 390\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 393\u001b[0m ctx\u001b[38;5;241m=\u001b[39mctx,\n\u001b[0;32m 394\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_manager)\n",
"File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python310\\site-packages\\tensorflow\\python\\eager\\execute.py:52\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 50\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 51\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 52\u001b[0m tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 53\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 54\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 55\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
"\u001b[1;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"for i in range(epochs):\n",
" #create data generator\n",
" generator = data_generator(train_descriptions, train_feature, tokenizer, max_len)\n",
" model.fit(generator, epochs=1, steps_per_epoch = steps, verbose=1)\n",
" model.save(\"model_\" + str(i) + \"h5\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f4867e1b",
"metadata": {},
"outputs": [],
"source": [
"# from tensorflow.keras.callbacks import ModelCheckpoint\n",
"\n",
"# # Define the number of epochs and steps\n",
"# epochs = 10\n",
"# steps_per_epoch = len(train_descriptions)\n",
"\n",
"# # Create a data generator\n",
"# generator = data_generator(train_descriptions, train_feature, tokenizer, max_len)\n",
"\n",
"# # Define a checkpoint callback to save the model after each epoch\n",
"# checkpoint = ModelCheckpoint(filepath=\"model_{epoch}.h5\", save_weights_only=False, save_format=\"h5\")\n",
"\n",
"# # Train the model for the specified number of epochs\n",
"# model.fit(generator, epochs=epochs, steps_per_epoch=steps_per_epoch, verbose=1, callbacks=[checkpoint])"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "3a998776",
"metadata": {},
"outputs": [],
"source": [
"def word_for_id(interger, tokenizer):\n",
" for word, index in tokenizer.word_index.items():\n",
" if index==interger:\n",
" return word\n",
" return None\n",
"def generate_desc(model, tokenizer, photo, max_len):\n",
" in_text = \"start_seq\"\n",
" for i in range(max_len):\n",
" sequence = tokenizer.texts_to_sequences([in_text])[0]\n",
" sequence = pad_sequence([sequence], maxlen = max_len)\n",
" yhat = model.predict([photo, sequence], verbose=1)\n",
" yhat = argmax(yhat)\n",
" word = word_for_id(yhat, tokenizer)\n",
" if word is None:\n",
" break\n",
" in_text += ' '+word\n",
" if word=='endseq':\n",
" break\n",
" return in_text"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9f7dfb85",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'corpus_bleu' is not defined",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[3], line 8\u001b[0m\n\u001b[0;32m 6\u001b[0m references \u001b[38;5;241m=\u001b[39m [d\u001b[38;5;241m.\u001b[39msplit() \u001b[38;5;28;01mfor\u001b[39;00m d \u001b[38;5;129;01min\u001b[39;00m desc_list]\n\u001b[0;32m 7\u001b[0m actual\u001b[38;5;241m.\u001b[39mappend(yhat\u001b[38;5;241m.\u001b[39msplit())\n\u001b[1;32m----> 8\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mBLUE-1: \u001b[39m\u001b[38;5;132;01m%f\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m\u001b[43mcorpus_bleu\u001b[49m(actual, predicted, weights\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m1.0\u001b[39m,\u001b[38;5;241m0\u001b[39m,\u001b[38;5;241m0\u001b[39m,\u001b[38;5;241m0\u001b[39m)))\n\u001b[0;32m 9\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mBLUE-2: \u001b[39m\u001b[38;5;132;01m%f\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39mcorpus_bleu(actual, predicted, weights\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m0.5\u001b[39m,\u001b[38;5;241m0.5\u001b[39m,\u001b[38;5;241m0\u001b[39m,\u001b[38;5;241m0\u001b[39m)))\n\u001b[0;32m 10\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mBLUE-3: \u001b[39m\u001b[38;5;132;01m%f\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39mcorpus_bleu(actual, predicted, weights\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m0.3\u001b[39m,\u001b[38;5;241m0.3\u001b[39m,\u001b[38;5;241m0.3\u001b[39m,\u001b[38;5;241m0\u001b[39m)))\n",
"\u001b[1;31mNameError\u001b[0m: name 'corpus_bleu' is not defined"
]
}
],
"source": [
"# evaluated the skill of model\n",
"def evaluate_model(model, description, photos, tokenizer, max_length):\n",
" actual, predicted = list(), list()\n",
" for key, desc_list in description.items():\n",
" yhat = generate_desc(model, tokenizer, photos[key], max_length)\n",
" references = [d.split() for d in desc_list]\n",
" actual.append(yhat.split())\n",
" predicted.append(yhat.split())\n",
"print(\"BLUE-1: %f\" %corpus_bleu(actual, predicted, weights=(1.0,0,0,0)))\n",
"print(\"BLUE-2: %f\" %corpus_bleu(actual, predicted, weights=(0.5,0.5,0,0)))\n",
"print(\"BLUE-3: %f\" %corpus_bleu(actual, predicted, weights=(0.3,0.3,0.3,0)))\n",
"print(\"BLUE-4: %f\" %corpus_bleu(actual, predicted, weights=(0.25,0.25,0.25,0.25)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5a1cd9c",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1509cb1",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|