File size: 18,767 Bytes
49925e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575


from os import listdir
from numpy import array
from keras.models import Model
from pickle import dump
from keras.applications.vgg16 import VGG16
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
from keras.utils import to_categorical
from keras.utils import plot_model
from keras.models import Model
from keras.layers import Input
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Embedding
from keras.layers import Dropout
from tensorflow.keras.layers import Add
from keras.callbacks import ModelCheckpoint

from keras.applications.vgg16 import VGG16, preprocess_input
model = VGG16()
# re-structure the model
model.layers.pop()
model = Model(inputs=model.inputs, outputs=model.layers[-2].output)
# summarize
print(model.summary())

from os import listdir
from pickle import dump
from tensorflow.keras.preprocessing.image import img_to_array, load_img
from keras.models import Model

# extract feature from each photo in directory
def extract_features(directory):
	# extract features from each photo
	features = dict()
	for name in listdir(directory):
		# load an image from file
		filename = directory + '/' + name
		image = load_img(filename, target_size=(224, 224))
		# convert the image pixels to a numpy array
		image = img_to_array(image)
		# reshape data for the model
		image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
		# prepare the image for the VGG model
		image = preprocess_input(image)
		# get features
		feature = model.predict(image, verbose=0)
		# get image id
		image_id = name.split('.')[0]
		# store feature
		features[image_id] = feature
		print('>%s' % name)
	return features

# directory = "/content/drive/MyDrive/Image_Captioning_Project/Images"
# features = extract_features(directory)
# dump(features, open('features1.pkl', 'wb'))
# print("Extracted Features: %d" %len(features))

!ls

import string
from nltk.tokenize import word_tokenize

def load_doc(filename):
    # open the file as read only
    file = open(filename, 'r')
    # read all text
    text = file.read()
    # close the file
    file.close()
    return text

def load_descriptions(doc):
	mapping = dict()
	# process lines
	for line in doc.split('\n'):
		# split line by white space
		tokens = line.split()
		if len(line) < 2:
			continue
		# take the first token as the image id, the rest as the description
		image_id, image_desc = tokens[0], tokens[1:]
		# remove filename from image id
		image_id = image_id.split('.')[0]
		# convert description tokens back to string
		image_desc = ' '.join(image_desc)
		# create the list if needed
		if image_id not in mapping:
			mapping[image_id] = list()
		# store description
		mapping[image_id].append(image_desc)
	return mapping

"""## Preprocessing of Text

1. Convert all words to lowercase.
2. Remove all punctuation.
3. Remove all words that are one character or less in length (e.g. ‘a’).
4. Remove all words with numbers in them.
"""

def clean_descriptions(descriptions):
    # prepare translation table for removing punctuation
    table = str.maketrans('', '', string.punctuation)
    for key, desc_list in descriptions.items():
        for i in range(len(desc_list)):
            desc = desc_list[i]
            # tokenize
            desc = desc.split()
            # convert to lower case
            desc = [word.lower() for word in desc]
            # remove punctuation from each token
            desc = [w.translate(table) for w in desc]
            # remove hanging 's' and 'a'
            desc = [word for word in desc if len(word)>1]
            # remove tokens with numbers in them
            desc = [word for word in desc if word.isalpha()]
            # store as string
            desc_list[i] =  ' '.join(desc)
def to_vocabulary(descriptions):
    # build a list of all description strings
    all_desc = set()
    for key in descriptions.keys():
        [all_desc.update(d.split()) for d in descriptions[key]]
    return all_desc

def save_descriptions(descriptions, filename):
    lines = list()
    for key, desc_list in descriptions.items():
        for desc in desc_list:
            lines.append(key + " " + desc)
    data = '\n'.join(lines)
    file = open(filename, 'w')
    file.write(data)
    file.close()

import nltk
nltk.download('punkt')

filename = "/content/drive/MyDrive/Image_Captioning_Project/Flickr8k.token.txt"
doc = load_doc(filename)
descriptions = load_descriptions(doc)
print("Loaded: %d" %len(descriptions))

#clean desc
clean_descriptions(descriptions)
vocab = to_vocabulary(descriptions)
print("Vocab size: %d" %len(vocab))

# save_descriptions(descriptions, "descriptions2.txt")

"""### Developing Deep Learning Model

#### This section is divided into the following parts:

Loading Data.
Defining the Model.
Fitting the Model.
"""

from pickle import dump

#load into memory
def load_doc(filename):
	# open the file as read only
	file = open(filename, 'r')
	# read all text
	text = file.read()
	# close the file
	file.close()
	return text

#pre-defined list of photo identifier
def load_set(filename):
    doc = load_doc(filename)
    dataset = list()
    for line in doc.split("\n"):
        if len(line) < 1:
            continue
        identifier = line.split('.')[0]
        dataset.append(identifier)
    return set(dataset)

"""load_clean_descriptions() that loads the cleaned text descriptions from ‘descriptions.txt‘ for a given set of identifiers and returns a dictionary of identifiers to lists of text descriptions.

The model we will develop will generate a caption given a photo, and the caption will be generated one word at a time. The sequence of previously generated words will be provided as input. Therefore, we will need a ‘first word’ to kick-off the generation process and a ‘last word‘ to signal the end of the caption.

We will use the strings ‘startseq‘ and ‘endseq‘ for this purpose.
"""

def load_photo_features(features, dataset):
    all_features = load(open(features, 'rb'))
    features = {k: all_features[k] for k in dataset}
    return features

def load_clean_descriptions(filename, dataset):
	# load document
	doc = load_doc(filename)
	descriptions = dict()
	for line in doc.split('\n'):
		# split line by white space
		tokens = line.split()
		# split id from description
		image_id, image_desc = tokens[0], tokens[1:]
		# skip images not in the set
		if image_id in dataset:
			# create list
			if image_id not in descriptions:
				descriptions[image_id] = list()
			# wrap description in tokens
			desc = 'startseq ' + ' '.join(image_desc) + ' endseq'
			# store
			descriptions[image_id].append(desc)
	return descriptions

from pickle import load

# load training dataset (6K)
filename = '/content/drive/MyDrive/Image_Captioning_Project/Flickr_8k.trainImages.txt'
train = load_set(filename)
print('Dataset: %d' % len(train))
# descriptions
train_descriptions = load_clean_descriptions('/content/drive/MyDrive/Image_Captioning_Project/descriptions1.txt', train)
print('Descriptions: train=%d' % len(train_descriptions))
# photo features
train_features = load_photo_features('/content/drive/MyDrive/Image_Captioning_Project/features.pkl', train)
print('Photos: train=%d' % len(train_features))

def load_doc(filename):
	# open the file as read only
	file = open(filename, 'r')
	# read all text
	text = file.read()
	# close the file
	file.close
	return text

def load_set(filename):
    doc = load_doc(filename)
    dataset = list()
    for line in doc.split("\n"):
        if len(line) < 1:
            continue
        identifier = line.split('.')[0]
        dataset.append(identifier)
    return set(dataset)

def load_clean_descriptions(filename, dataset):
	# load document
	doc = load_doc(filename)
	descriptions = dict()
	for line in doc.split('\n'):
		# split line by white space
		tokens = line.split()
		# split id from description
		image_id, image_desc = tokens[0], tokens[1:]
		# skip images not in the set
		if image_id in dataset:
			# create list
			if image_id not in descriptions:
				descriptions[image_id] = list()
			# wrap description in tokens
			desc = 'startseq ' + ' '.join(image_desc) + ' endseq'
			# store
			descriptions[image_id].append(desc)
	return descriptions

def load_photo_features(filename, dataset):
	# load all features
	all_features = load(open(filename, 'rb'))
	# filter features
	features = {k: all_features[k] for k in dataset}
	return features

# dict to clean list
def to_lines(descriptions):
    all_desc = list()
    for key in descriptions.keys():
        [all_desc.append(d) for d in descriptions[key]]
    return all_desc

def create_tokenizer(descriptions):
    lines = to_lines(descriptions)
    tokenizer = Tokenizer()
    tokenizer.fit_on_texts(lines)
    return tokenizer

#len of description
def max_length(description):
    lines = to_lines(description)
    return max(len(d.split()) for d in lines)

# create input and output sequence
def create_sequences(tokenizer, max_length, desc_list, photo):
    X1, X2, y = list(), list(), list()
    # walk through each description for the image
    for desc in desc_list:
        # encode the sequence
        seq = tokenizer.texts_to_sequences([desc])[0]
        # split one sequence into multiple X,y pairs
        for i in range(1, len(seq)):
            # split into input and output pair
            in_seq, out_seq = seq[:i], seq[i]
            # pad input sequence
            in_seq = pad_sequences([in_seq], maxlen=max_length)[0]
            # encode output sequence
            out_seq = to_categorical([out_seq], num_classes=vocab_size)[0]
            # store
            X1.append(photo)
            X2.append(in_seq)
            y.append(out_seq)
    return array(X1), array(X2), array(y)

"""## Model building"""

from tensorflow.keras.layers import add
def define_model(vocab_size, max_length):
    # feature extractor model
    inputs1 = Input(shape=(1000,))
    fe1 = Dropout(0.5)(inputs1)
    fe2 = Dense(256, activation='relu')(fe1)
    # sequence model
    inputs2 = Input(shape=(max_length,))
    se1 = Embedding(vocab_size,output_dim=256, mask_zero=True)(inputs2)
    se2 = Dropout(0.5)(se1)
    se3 = LSTM(256)(se2)
    # decoder model
    decoder1 = add([fe2, se3])
    decoder2 = Dense(256, activation='relu')(decoder1)
    outputs = Dense(vocab_size, activation='softmax')(decoder2)
    # tie it together [image, seq] [word]
    model = Model(inputs=[inputs1, inputs2], outputs=outputs)
    model.compile(loss='categorical_crossentropy', optimizer='adam')
    # summarize model
    print(model.summary())
    return model

# load batch of data
def data_generator(descriptions, photos, tokenizer, max_length):
    # loop for ever over images
    while 1:
        for key, desc_list in descriptions.items():
            # retrieve the photo feature
            photo = photos[key][0]
            in_img, in_seq, out_word = create_sequences(tokenizer, max_length, desc_list, photo)
            yield [[in_img, in_seq], out_word]

#load train dataset
import tensorflow as tf
filename = "/content/drive/MyDrive/Image_Captioning_Project/Flickr_8k.trainImages.txt"
train = load_set(filename)
print("Dataset: %d" %len(train))

train_descriptions = load_clean_descriptions("/content/drive/MyDrive/Image_Captioning_Project/descriptions1.txt", train)
print("train_descriptions= %d" %len(train_descriptions))

train_feature = load_photo_features("/content/drive/MyDrive/Image_Captioning_Project/features.pkl", train)
print("photos: train= %d" %len(train_feature))

tokenizer = create_tokenizer(train_descriptions)
vocab_size = len(tokenizer.word_index)+1
print("Vocab size: %d" %vocab_size)

max_length = max_length(train_descriptions)
print('Description Length: %d' % max_length)

import pickle

# Dump the tokenizer using pickle
with open('tokenizer1.pkl', 'wb') as f:
    pickle.dump(tokenizer, f)

#train model
# model = define_model(vocab_size, max_length)
# filename = "/content/drive/MyDrive/Image_Captioning_Project/model_18.h5"
# model = load_model(filename)
# epochs = 4
# steps = len(train_descriptions)
# model.summary()

# for i in range(epochs):
#     #create data generator
#     generator = data_generator(train_descriptions, train_feature, tokenizer, max_len)
#     model.fit(generator, epochs=1, steps_per_epoch = steps, verbose=1)
#     model.save("model_" + str(i) + ".h5")

def load_doc(filename):
	# open the file as read only
	file = open(filename, 'r')
	# read all text
	text = file.read()
	# close the file
	file.close()
	return text

# load a pre-defined list of photo identifiers
def load_set(filename):
	doc = load_doc(filename)
	dataset = list()
	# process line by line
	for line in doc.split('\n'):
		# skip empty lines
		if len(line) < 1:
			continue
		# get the image identifier
		identifier = line.split('.')[0]
		dataset.append(identifier)
	return set(dataset)

def load_photo_features(filename, dataset):
	# load all features
	all_features = load(open(filename, 'rb'))
	# filter features
	features = {k: all_features[k] for k in dataset}
	return features

# covert a dictionary of clean descriptions to a list of descriptions
def to_lines(descriptions):
	all_desc = list()
	for key in descriptions.keys():
		[all_desc.append(d) for d in descriptions[key]]
	return all_desc

# fit a tokenizer given caption descriptions
def create_tokenizer(descriptions):
	lines = to_lines(descriptions)
	tokenizer = Tokenizer()
	tokenizer.fit_on_texts(lines)
	return tokenizer

# calculate the length of the description with the most words
def max_length(descriptions):
	lines = to_lines(descriptions)
	return max(len(d.split()) for d in lines)

# map an integer to a word
def word_for_id(integer, tokenizer):
	for word, index in tokenizer.word_index.items():
		if index == integer:
			return word
	return None

from tensorflow.keras.preprocessing.sequence import pad_sequences
import numpy as np
def generate_desc(model, tokenizer, photo, max_length):
	# seed the generation process
	in_text = 'startseq'
	# iterate over the whole length of the sequence
	for i in range(max_length):
		# integer encode input sequence
		sequence = tokenizer.texts_to_sequences([in_text])[0]
		# pad input
		sequence = pad_sequences([sequence], maxlen=max_length)
		# predict next word
		yhat = model.predict([photo,sequence], verbose=0)
		# convert probability to integer
		yhat = np.argmax(yhat)
		# map integer to word
		word = word_for_id(yhat, tokenizer)
		# stop if we cannot map the word
		if word is None:
			break
		# append as input for generating the next word
		in_text += ' ' + word
		# stop if we predict the end of the sequence
		if word == 'endseq':
			break
	return in_text

# evaluated the skill of model
from nltk.translate.bleu_score import corpus_bleu
def evaluate_model(model, descriptions, photos, tokenizer, max_length):
	actual, predicted = list(), list()
	# step over the whole set
	for key, desc_list in descriptions.items():
		# generate description
		yhat = generate_desc(model, tokenizer, photos[key], max_length)
		# store actual and predicted
		references = [d.split() for d in desc_list]
		actual.append(references)
		predicted.append(yhat.split())
	# calculate BLEU score
	print('BLEU-1: %f' % corpus_bleu(actual, predicted, weights=(1.0, 0, 0, 0)))
	print('BLEU-2: %f' % corpus_bleu(actual, predicted, weights=(0.5, 0.5, 0, 0)))
	print('BLEU-3: %f' % corpus_bleu(actual, predicted, weights=(0.3, 0.3, 0.3, 0)))
	print('BLEU-4: %f' % corpus_bleu(actual, predicted, weights=(0.25, 0.25, 0.25, 0.25)))

#load train dataset
import tensorflow as tf
filename = "/content/drive/MyDrive/Image_Captioning_Project/Flickr_8k.trainImages.txt"
train = load_set(filename)
print("Dataset: %d" %len(train))

train_descriptions = load_clean_descriptions("/content/drive/MyDrive/Image_Captioning_Project/descriptions.txt", train)
print("train_descriptions= %d" %len(train_descriptions))

train_feature = load_photo_features("/content/drive/MyDrive/Image_Captioning_Project/features.pkl", train)
print("photos: train= %d" %len(train_feature))

tokenizer = create_tokenizer(train_descriptions)
vocab_size = len(tokenizer.word_index)+1
print("Vocab size: %d" %vocab_size)

max_length = max_length(train_descriptions)
print('Description Length: %d' % max_length)

filename = "/content/drive/MyDrive/Image_Captioning_Project/Flickr_8k.testImages.txt"
test = load_set(filename)
print("Dataset: %d" %len(test))
test_description = load_clean_descriptions("/content/drive/MyDrive/Image_Captioning_Project/descriptions.txt", test)
print("Description= %d" %len(test_description))
test_features = load_photo_features("/content/drive/MyDrive/Image_Captioning_Project/features.pkl", test)
print("photos: test=%d" % len(test_features))

from keras.models import load_model
filename = "/content/drive/MyDrive/Image_Captioning_Project/model_18.h5"
model = load_model(filename)

# evaluate_model(model, test_description, test_features, tokenizer, max_length)

from pickle import load
from numpy import argmax
from tensorflow.keras.preprocessing.sequence import pad_sequences
from keras.applications.vgg16 import VGG16
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array
from keras.applications.vgg16 import preprocess_input
from keras.models import Model
from keras.models import load_model
# from keras.preprocessing.text import Tokenizer

def extract_features(filename):
	# load the model
	model = VGG16()
	# re-structure the model
	model.layers.pop()
	model = Model(inputs=model.inputs, outputs=model.layers[-2].output)
	# load the photo
	image = load_img(filename, target_size=(224, 224))
	# convert the image pixels to a numpy array
	image = img_to_array(image)
	# reshape data for the model
	image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
	# prepare the image for the VGG model
	image = preprocess_input(image)
	# get features
	feature = model.predict(image, verbose=0)
	return feature

from pickle import load
from tensorflow.keras.preprocessing.text import Tokenizer

tokenizer = load(open('/content/tokenizer1.pkl', 'rb'))
max_len = 34
model = load_model('/content/drive/MyDrive/Image_Captioning_Project/model_18.h5')
photo = extract_features("/content/drive/MyDrive/Image_Captioning_Project/Images/101654506_8eb26cfb60.jpg")
tokenizer.analyzer = None
description = generate_desc(model, tokenizer, photo, max_len)
print(description)

query = description
stopwords = ['startseq','endseq']
querywords = query.split()

resultwords  = [word for word in querywords if word.lower() not in stopwords]
result = ' '.join(resultwords)

print(result)