|
import streamlit as st |
|
import tweepy as tw |
|
import pandas as pd |
|
from transformers import pipeline |
|
|
|
|
|
consumer_key = 'OCgWzDW6PaBvBeVimmGBqdAg1' |
|
consumer_secret = 'tBKnmyg5Jfsewkpmw74gxHZbbZkGIH6Ee4rsM0lD1vFL7SrEIM' |
|
access_token = '1449663645412065281-LNjZoEO9lxdtxPcmLtM35BRdIKYHpk' |
|
access_token_secret = 'FL3SGsUWSzPVFnG7bNMnyh4vYK8W1SlABBNtdF7Xcbh7a' |
|
auth = tw.OAuthHandler(consumer_key, consumer_secret) |
|
auth.set_access_token(access_token, access_token_secret) |
|
api = tw.API(auth, wait_on_rate_limit=True) |
|
classifier = pipeline('sentiment-analysis') |
|
|
|
st.title('Live Twitter Sentiment Analysis with Tweepy and HuggingFace Transformers') |
|
st.markdown('This app uses tweepy to get tweets from twitter based on the input name/phrase. It then processes the tweets through HuggingFace transformers pipeline function for sentiment analysis. The resulting sentiments and corresponding tweets are then put in a dataframe for display which is what you see as result.') |
|
|
|
def run(): |
|
|
|
with st.form(key='Enter name'): |
|
search_words = st.text_input('Enter the name for which you want to know the sentiment') |
|
number_of_tweets = st.number_input('Enter the number of latest tweets for which you want to know the sentiment(Maximum 50 tweets)', 0,50,10) |
|
submit_button = st.form_submit_button(label='Submit') |
|
if submit_button: |
|
tweets =tw.Cursor(api.search_tweets,q=search_words,lang="en").items(number_of_tweets) |
|
tweet_list = [i.text for i in tweets] |
|
p = [i for i in classifier(tweet_list)] |
|
q=[p[i]['label'] for i in range(len(p))] |
|
df = pd.DataFrame(list(zip(tweet_list, q)),columns =['Latest '+str(number_of_tweets)+' Tweets'+' on '+search_words, 'sentiment']) |
|
st.write(df) |
|
|
|
if __name__=='__main__': |
|
run() |