rajeshthangaraj1 commited on
Commit
c9c01d6
·
verified ·
1 Parent(s): aa1a180

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -0
app.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
4
+ import gradio as gr
5
+ from google.colab import drive
6
+
7
+ # Install bitsandbytes and accelerate
8
+ !pip install bitsandbytes
9
+ !pip install accelerate
10
+
11
+ # Mount Google Drive
12
+ drive.mount('/content/drive')
13
+
14
+ # Set the path to the local directory where the model and tokenizer are saved
15
+ MODEL_PATH = "/content/drive/My Drive/phi35"
16
+
17
+ # Load the tokenizer from the local directory
18
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
19
+
20
+ # Load the model with 8-bit quantization
21
+ model = AutoModelForCausalLM.from_pretrained(
22
+ MODEL_PATH,
23
+ device_map='auto',
24
+ load_in_8bit=True
25
+ )
26
+
27
+ # Create the text-generation pipeline
28
+ pipe = pipeline(
29
+ "text-generation",
30
+ model=model,
31
+ tokenizer=tokenizer,
32
+ max_length=256, # Adjusted for faster inference
33
+ do_sample=True,
34
+ top_p=0.95,
35
+ top_k=50,
36
+ temperature=0.8,
37
+ device_map={'': 0}
38
+ )
39
+
40
+ # Define the function for the Gradio interface
41
+ def chat_with_phi(message):
42
+ response = pipe(message)
43
+ return response[0]['generated_text']
44
+
45
+ # Set up the Gradio interface
46
+ app = gr.Interface(
47
+ fn=chat_with_phi,
48
+ inputs=gr.Textbox(label="Type your message:"),
49
+ outputs=gr.Textbox(label="Phi 3.5 Responds:"),
50
+ title="Phi 3.5 Text Chat",
51
+ description="Chat with Phi 3.5 model. Ask anything!",
52
+ theme="default"
53
+ )
54
+
55
+ # Launch the app
56
+ app.launch(debug=True)