Raman Dutt
app.py added
ee6eca1
raw
history blame
10.2 kB
import gradio as gr
import PIL.Image
from pathlib import Path
import pandas as pd
from diffusers.pipelines import StableDiffusionPipeline
import torch
import argparse
import os
import warnings
from safetensors.torch import load_file
import yaml
warnings.filterwarnings("ignore")
OUTPUT_DIR = "OUTPUT"
cuda_device = 1
device = f"cuda:{cuda_device}" if torch.cuda.is_available() else "cpu"
TITLE = "Demo for Generating Chest X-rays using Diferent Parameter-Efficient Fine-Tuned Stable Diffusion Pipelines"
INFO_ABOUT_TEXT_PROMPT = "INFO_ABOUT_TEXT_PROMPT"
INFO_ABOUT_GUIDANCE_SCALE = "INFO_ABOUT_GUIDANCE_SCALE"
INFO_ABOUT_INFERENCE_STEPS = "INFO_ABOUT_INFERENCE_STEPS"
EXAMPLE_TEXT_PROMPTS = [
"No acute cardiopulmonary abnormality.",
"Normal chest radiograph.",
"No acute intrathoracic process.",
"Mild pulmonary edema.",
"No focal consolidation concerning for pneumonia",
"No radiographic evidence for acute cardiopulmonary process",
]
def load_adapted_unet(unet_pretraining_type, exp_path, pipe):
"""
Loads the adapted U-Net for the selected PEFT Type
Parameters:
unet_pretraining_type (str): The type of PEFT to use for generating the X-ray
exp_path (str): The path to the best trained model for the selected PEFT Type
pipe (StableDiffusionPipeline): The Stable Diffusion Pipeline to use for generating the X-ray
Returns:
None
"""
sd_folder_path = "runwayml/stable-diffusion-v1-5"
if unet_pretraining_type == "freeze":
pass
elif unet_pretraining_type == "svdiff":
print("SV-DIFF UNET")
pipe.unet = load_unet_for_svdiff(
sd_folder_path,
spectral_shifts_ckpt=os.path.join(
os.path.join(exp_path, "unet"), "spectral_shifts.safetensors"
),
subfolder="unet",
)
for module in pipe.unet.modules():
if hasattr(module, "perform_svd"):
module.perform_svd()
elif unet_pretraining_type == "lorav2":
exp_path = os.path.join(exp_path, "pytorch_lora_weights.safetensors")
pipe.unet.load_attn_procs(exp_path)
else:
exp_path = unet_pretraining_type + "_" + "diffusion_pytorch_model.safetensors"
state_dict = load_file(exp_path)
print(pipe.unet.load_state_dict(state_dict, strict=False))
def loadSDModel(unet_pretraining_type, exp_path, cuda_device):
"""
Loads the Stable Diffusion Model for the selected PEFT Type
Parameters:
unet_pretraining_type (str): The type of PEFT to use for generating the X-ray
exp_path (str): The path to the best trained model for the selected PEFT Type
cuda_device (str): The CUDA device to use for generating the X-ray
Returns:
pipe (StableDiffusionPipeline): The Stable Diffusion Pipeline to use for generating the X-ray
"""
sd_folder_path = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(sd_folder_path, revision="fp16")
load_adapted_unet(unet_pretraining_type, exp_path, pipe)
pipe.safety_checker = None
return pipe
def load_all_pipelines():
"""
Loads all the Stable Diffusion Pipelines for each PEFT Type for efficient caching (Design Choice 2)
Parameters:
None
Returns:
sd_pipeline_full (StableDiffusionPipeline): The Stable Diffusion Pipeline for Full Fine-Tuning
sd_pipeline_norm (StableDiffusionPipeline): The Stable Diffusion Pipeline for Norm Fine-Tuning
sd_pipeline_bias (StableDiffusionPipeline): The Stable Diffusion Pipeline for Bias Fine-Tuning
sd_pipeline_attention (StableDiffusionPipeline): The Stable Diffusion Pipeline for Attention Fine-Tuning
sd_pipeline_NBA (StableDiffusionPipeline): The Stable Diffusion Pipeline for NBA Fine-Tuning
sd_pipeline_difffit (StableDiffusionPipeline): The Stable Diffusion Pipeline for Difffit Fine-Tuning
"""
# Dictionary containing the path to the best trained models for each PEFT type
MODEL_PATH_DICT = {
"full": "full_diffusion_pytorch_model.safetensors",
"norm": "norm_diffusion_pytorch_model.safetensors",
"bias": "bias_diffusion_pytorch_model.safetensors",
"attention": "attention_diffusion_pytorch_model.safetensors",
"norm_bias_attention": "norm_bias_attention_diffusion_pytorch_model.safetensors",
"difffit": "difffit_diffusion_pytorch_model.safetensors",
}
device = "0"
cuda_device = f"cuda:{device}" if torch.cuda.is_available() else "cpu"
# Full FT
unet_pretraining_type = "full"
print("Loading Pipeline for Full Fine-Tuning")
sd_pipeline_full = loadSDModel(
unet_pretraining_type=unet_pretraining_type,
exp_path=MODEL_PATH_DICT[unet_pretraining_type],
cuda_device=cuda_device,
)
# Norm
unet_pretraining_type = "norm"
print("Loading Pipeline for Norm Fine-Tuning")
sd_pipeline_norm = loadSDModel(
unet_pretraining_type=unet_pretraining_type,
exp_path=MODEL_PATH_DICT[unet_pretraining_type],
cuda_device=cuda_device,
)
# bias
unet_pretraining_type = "bias"
print("Loading Pipeline for Bias Fine-Tuning")
sd_pipeline_bias = loadSDModel(
unet_pretraining_type=unet_pretraining_type,
exp_path=MODEL_PATH_DICT[unet_pretraining_type],
cuda_device=cuda_device,
)
# attention
unet_pretraining_type = "attention"
print("Loading Pipeline for Attention Fine-Tuning")
sd_pipeline_attention = loadSDModel(
unet_pretraining_type=unet_pretraining_type,
exp_path=MODEL_PATH_DICT[unet_pretraining_type],
cuda_device=cuda_device,
)
# NBA
unet_pretraining_type = "norm_bias_attention"
print("Loading Pipeline for NBA Fine-Tuning")
sd_pipeline_NBA = loadSDModel(
unet_pretraining_type=unet_pretraining_type,
exp_path=MODEL_PATH_DICT[unet_pretraining_type],
cuda_device=cuda_device,
)
# difffit
unet_pretraining_type = "difffit"
print("Loading Pipeline for Difffit Fine-Tuning")
sd_pipeline_difffit = loadSDModel(
unet_pretraining_type=unet_pretraining_type,
exp_path=MODEL_PATH_DICT[unet_pretraining_type],
cuda_device=cuda_device,
)
return (
sd_pipeline_full,
sd_pipeline_norm,
sd_pipeline_bias,
sd_pipeline_attention,
sd_pipeline_NBA,
sd_pipeline_difffit,
)
# LOAD ALL PIPELINES FIRST AND CACHE THEM
# (
# sd_pipeline_full,
# sd_pipeline_norm,
# sd_pipeline_bias,
# sd_pipeline_attention,
# sd_pipeline_NBA,
# sd_pipeline_difffit,
# ) = load_all_pipelines()
# PIPELINE_DICT = {
# "full": sd_pipeline_full,
# "norm": sd_pipeline_norm,
# "bias": sd_pipeline_bias,
# "attention": sd_pipeline_attention,
# "norm_bias_attention": sd_pipeline_NBA,
# "difffit": sd_pipeline_difffit,
# }
def predict(
unet_pretraining_type,
input_text,
guidance_scale=4,
num_inference_steps=75,
device="0",
OUTPUT_DIR="OUTPUT",
PIPELINE_DICT=PIPELINE_DICT,
):
NUM_TUNABLE_PARAMS = {
"full": 86,
"attention": 26.7,
"bias": 0.343,
"norm": 0.2,
"norm_bias_attention": 26.7,
"lorav2": 0.8,
"svdiff": 0.222,
"difffit": 0.581,
}
cuda_device = f"cuda:{device}" if torch.cuda.is_available() else "cpu"
#sd_pipeline = PIPELINE_DICT[unet_pretraining_type]
print("Loading Pipeline for {} Fine-Tuning".format(unet_pretraining_type))
sd_pipeline_norm = loadSDModel(
unet_pretraining_type=unet_pretraining_type,
exp_path=MODEL_PATH_DICT[unet_pretraining_type],
cuda_device=cuda_device,
)
sd_pipeline.to(cuda_device)
result_image = sd_pipeline(
prompt=input_text,
height=224,
width=224,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
)
result_pil_image = result_image["images"][0]
# Create a Bar Plot displaying the number of tunable parameters for the selected PEFT Type
# Create a Pandas DataFrame
df = pd.DataFrame(
{
"PEFT Type": list(NUM_TUNABLE_PARAMS.keys()),
"Number of Tunable Parameters": list(NUM_TUNABLE_PARAMS.values()),
}
)
df = df[df["PEFT Type"].isin(["full", unet_pretraining_type])].reset_index(
drop=True
)
bar_plot = gr.BarPlot(
value=df,
x="PEFT Type",
y="Number of Tunable Parameters",
label="PEFT Type",
title="Number of Tunable Parameters",
vertical=False,
)
return result_pil_image, bar_plot
# Create a Gradio interface
"""
Input Parameters:
1. PEFT Type: (Dropdown) The type of PEFT to use for generating the X-ray
2. Input Text: (Textbox) The text prompt to use for generating the X-ray
3. Guidance Scale: (Slider) The guidance scale to use for generating the X-ray
4. Num Inference Steps: (Slider) The number of inference steps to use for generating the X-ray
Output Parameters:
1. Generated X-ray Image: (Image) The generated X-ray image
2. Number of Tunable Parameters: (Bar Plot) The number of tunable parameters for the selected PEFT Type
"""
iface = gr.Interface(
fn=predict,
inputs=[
gr.Dropdown(
["full", "difffit", "svdiff", "norm", "bias", "attention"],
label="PEFT Type",
),
gr.Dropdown(
EXAMPLE_TEXT_PROMPTS, info=INFO_ABOUT_TEXT_PROMPT, label="Input Text"
),
gr.Slider(
minimum=1,
maximum=10,
value=4,
step=1,
info=INFO_ABOUT_GUIDANCE_SCALE,
label="Guidance Scale",
),
gr.Slider(
minimum=1,
maximum=100,
value=75,
step=1,
info=INFO_ABOUT_INFERENCE_STEPS,
label="Num Inference Steps",
),
],
outputs=[gr.Image(type="pil"), gr.BarPlot()],
live=True,
analytics_enabled=False,
title=TITLE,
)
# Launch the Gradio interface
iface.launch(share=True)