Spaces:
Sleeping
Sleeping
import os | |
import spaces | |
import gradio as gr | |
import torch | |
from colpali_engine.models.paligemma_colbert_architecture import ColPali | |
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator | |
from colpali_engine.utils.colpali_processing_utils import ( | |
process_images, | |
process_queries, | |
) | |
from pdf2image import convert_from_path | |
from PIL import Image | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
from transformers import AutoProcessor, Idefics3ForConditionalGeneration | |
import re | |
import time | |
from PIL import Image | |
import torch | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
## Load idefics | |
id_processor = AutoProcessor.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3") | |
id_model = Idefics3ForConditionalGeneration.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3", | |
torch_dtype=torch.bfloat16, | |
#_attn_implementation="flash_attention_2" | |
).to("cuda") | |
BAD_WORDS_IDS = id_processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids | |
EOS_WORDS_IDS = [id_processor.tokenizer.eos_token_id] | |
# Load colpali model | |
model_name = "vidore/colpali-v1.2" | |
token = os.environ.get("HF_TOKEN") | |
model = ColPali.from_pretrained( | |
"vidore/colpaligemma-3b-pt-448-base", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval() | |
model.load_adapter(model_name) | |
model = model.eval() | |
processor = AutoProcessor.from_pretrained(model_name, token = token) | |
mock_image = Image.new("RGB", (448, 448), (255, 255, 255)) | |
def model_inference( | |
images, text, assistant_prefix= None, decoding_strategy = "Greedy", temperature= 0.4, max_new_tokens=512, | |
repetition_penalty=1.2, top_p=0.8 | |
): | |
print(type(images)) | |
images = images[0] | |
print(type(images)) | |
if text == "" and not images: | |
gr.Error("Please input a query and optionally image(s).") | |
if text == "" and images: | |
gr.Error("Please input a text query along the image(s).") | |
if isinstance(images, Image.Image): | |
images = [images] | |
resulting_messages = [ | |
{ | |
"role": "user", | |
"content": [{"type": "image"}] + [ | |
{"type": "text", "text": text} | |
] | |
} | |
] | |
if assistant_prefix: | |
text = f"{assistant_prefix} {text}" | |
prompt = id_processor.apply_chat_template(resulting_messages, add_generation_prompt=True) | |
inputs = id_processor(text=prompt, images=images, return_tensors="pt") | |
inputs = {k: v.to("cuda") for k, v in inputs.items()} | |
generation_args = { | |
"max_new_tokens": max_new_tokens, | |
"repetition_penalty": repetition_penalty, | |
} | |
assert decoding_strategy in [ | |
"Greedy", | |
"Top P Sampling", | |
] | |
if decoding_strategy == "Greedy": | |
generation_args["do_sample"] = False | |
elif decoding_strategy == "Top P Sampling": | |
generation_args["temperature"] = temperature | |
generation_args["do_sample"] = True | |
generation_args["top_p"] = top_p | |
generation_args.update(inputs) | |
# Generate | |
generated_ids = id_model.generate(**generation_args) | |
generated_texts = id_processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True) | |
return generated_texts[0] | |
def search(query: str, ds, images, k): | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
if device != model.device: | |
model.to(device) | |
qs = [] | |
with torch.no_grad(): | |
batch_query = process_queries(processor, [query], mock_image) | |
batch_query = {k: v.to(device) for k, v in batch_query.items()} | |
embeddings_query = model(**batch_query) | |
qs.extend(list(torch.unbind(embeddings_query.to("cpu")))) | |
retriever_evaluator = CustomEvaluator(is_multi_vector=True) | |
scores = retriever_evaluator.evaluate(qs, ds) | |
top_k_indices = scores.argsort(axis=1)[0][-k:][::-1] | |
results = [] | |
for idx in top_k_indices: | |
results.append((images[idx])) #, f"Page {idx}" | |
print("done") | |
return results | |
def index(files, ds): | |
print("Converting files") | |
images = convert_files(files) | |
print(f"Files converted with {len(images)} images.") | |
return index_gpu(images, ds) | |
def convert_files(files): | |
images = [] | |
for f in files: | |
images.extend(convert_from_path(f, thread_count=4)) | |
if len(images) >= 150: | |
raise gr.Error("The number of images in the dataset should be less than 150.") | |
return images | |
def index_gpu(images, ds): | |
"""Example script to run inference with ColPali""" | |
# run inference - docs | |
dataloader = DataLoader( | |
images, | |
batch_size=4, | |
shuffle=False, | |
collate_fn=lambda x: process_images(processor, x), | |
) | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
if device != model.device: | |
model.to(device) | |
for batch_doc in tqdm(dataloader): | |
with torch.no_grad(): | |
batch_doc = {k: v.to(device) for k, v in batch_doc.items()} | |
embeddings_doc = model(**batch_doc) | |
ds.extend(list(torch.unbind(embeddings_doc.to("cpu")))) | |
return f"Uploaded and converted {len(images)} pages", ds, images | |
def answer_gpu(): | |
return 0 | |
def get_example(): | |
return [[["climate_youth_magazine.pdf"], "How much tropical forest is cut annually ?"]] | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
gr.Markdown("## 1️⃣ Upload PDFs") | |
file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs") | |
convert_button = gr.Button("🔄 Index documents") | |
message = gr.Textbox("Files not yet uploaded", label="Status") | |
embeds = gr.State(value=[]) | |
imgs = gr.State(value=[]) | |
img_chunk = gr.State(value=[]) | |
with gr.Column(scale=3): | |
gr.Markdown("## 2️⃣ Search") | |
query = gr.Textbox(placeholder="Enter your query here", label="Query") | |
k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5) | |
# with gr.Row(): | |
# gr.Examples( | |
# examples=get_example(), | |
# inputs=[file, query], | |
# ) | |
# Define the actions | |
search_button = gr.Button("🔍 Search", variant="primary") | |
output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True) | |
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs]) | |
search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[img_chunk]) | |
answer_button = gr.Button("Answer", variant="primary") | |
output = gr.Textbox(label="Output") | |
answer_button.click(model_inference, inputs=[img_chunk, query], outputs=output) | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch(debug=True) |