File size: 4,296 Bytes
59812f5
141ba59
c86c2f3
 
 
d2d3f64
c86c2f3
0f4b183
 
c86c2f3
4522cd0
 
59812f5
4522cd0
141ba59
b5bcfdd
 
4522cd0
 
b5bcfdd
e6dd388
 
 
 
d966909
e6dd388
 
c86c2f3
09b3f75
c86c2f3
1827259
141ba59
0f4b183
 
 
 
141ba59
0f4b183
f57704e
141ba59
64868e1
 
c86c2f3
3856850
745c16f
3856850
d2d3f64
4522cd0
c86c2f3
141ba59
 
e786b1e
64868e1
 
 
141ba59
 
 
 
3856850
141ba59
64868e1
 
 
 
54995d2
 
6bc8e25
54995d2
141ba59
 
 
54995d2
141ba59
 
 
64868e1
 
 
141ba59
 
 
 
 
c86c2f3
141ba59
 
 
 
e786b1e
 
 
 
 
c86c2f3
 
0f4b183
 
 
 
 
ee2cfaf
 
0f4b183
 
1827259
141ba59
 
0f4b183
e6dd388
 
89f9579
 
0f4b183
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
from peft import PeftModel

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
# Storytell AI 
Welcome to the Storytell AI space, crafted with care by Ranam & George. Dive into the world of educational storytelling with our [Storytell](https://huggingface.co/ranamhamoud/storytell) model. This iteration of the Llama 2 model with 7 billion parameters is fine-tuned to generate educational stories that engage and educate. Enjoy a journey of discovery and creativity—your storytelling lesson begins here!
"""


LICENSE = """
<p/>
---
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"


if torch.cuda.is_available():
    bnb_config = BitsAndBytesConfig(
    load_in_8bit=True,
    bnb_4bit_compute_dtype=torch.float16,
    )
    model_id = "meta-llama/Llama-2-7b-chat-hf"
    base_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",quantization_config=bnb_config)
    model = PeftModel.from_pretrained(base_model,"ranamhamoud/storytell")
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.pad_token = tokenizer.eos_token
    

def make_prompt(entry):
    return f"### Human: YOUR INSTRUCTION HERE,ONLY TELL A STORY,INCLUDE AT LEAST AN MCQ, FILL IN THE BLANK AND TRUE OR FALSE: {entry} ### Assistant:"
    
@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.4,  # Lower -> less random
    top_p: float = 0.1,  # Lower -> less random, considering only the top 10% of tokens at each step
    top_k: int = 1,  # Least random, only the most likely next token is considered
    repetition_penalty: float = 1.0,  # No repetition penalty
) -> Iterator[str]:
    conversation = []
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": make_prompt(message)})

    enc = tokenizer(make_prompt(message), return_tensors="pt", padding=True, truncation=True)


    input_ids = enc.input_ids
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)
        
    final_story = "".join(outputs) 
    conversation_id = save_chat_history(chat_history + [(message, final_story)])  

        yield f"Conversation ID: {conversation_id}"


chat_interface = gr.ChatInterface(
    fn=generate,
    stop_btn=None,
    examples=[
        ["Can you explain briefly to me what is the Python programming language?"],
         ["I'm curious about Merge Sort."],
         ["Teach me about conditionals."]
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    chat_interface.render()
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()