Spaces:
Paused
Paused
File size: 4,296 Bytes
59812f5 141ba59 c86c2f3 d2d3f64 c86c2f3 0f4b183 c86c2f3 4522cd0 59812f5 4522cd0 141ba59 b5bcfdd 4522cd0 b5bcfdd e6dd388 d966909 e6dd388 c86c2f3 09b3f75 c86c2f3 1827259 141ba59 0f4b183 141ba59 0f4b183 f57704e 141ba59 64868e1 c86c2f3 3856850 745c16f 3856850 d2d3f64 4522cd0 c86c2f3 141ba59 e786b1e 64868e1 141ba59 3856850 141ba59 64868e1 54995d2 6bc8e25 54995d2 141ba59 54995d2 141ba59 64868e1 141ba59 c86c2f3 141ba59 e786b1e c86c2f3 0f4b183 ee2cfaf 0f4b183 1827259 141ba59 0f4b183 e6dd388 89f9579 0f4b183 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
from peft import PeftModel
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Storytell AI
Welcome to the Storytell AI space, crafted with care by Ranam & George. Dive into the world of educational storytelling with our [Storytell](https://huggingface.co/ranamhamoud/storytell) model. This iteration of the Llama 2 model with 7 billion parameters is fine-tuned to generate educational stories that engage and educate. Enjoy a journey of discovery and creativity—your storytelling lesson begins here!
"""
LICENSE = """
<p/>
---
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
bnb_config = BitsAndBytesConfig(
load_in_8bit=True,
bnb_4bit_compute_dtype=torch.float16,
)
model_id = "meta-llama/Llama-2-7b-chat-hf"
base_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",quantization_config=bnb_config)
model = PeftModel.from_pretrained(base_model,"ranamhamoud/storytell")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
def make_prompt(entry):
return f"### Human: YOUR INSTRUCTION HERE,ONLY TELL A STORY,INCLUDE AT LEAST AN MCQ, FILL IN THE BLANK AND TRUE OR FALSE: {entry} ### Assistant:"
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.4, # Lower -> less random
top_p: float = 0.1, # Lower -> less random, considering only the top 10% of tokens at each step
top_k: int = 1, # Least random, only the most likely next token is considered
repetition_penalty: float = 1.0, # No repetition penalty
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": make_prompt(message)})
enc = tokenizer(make_prompt(message), return_tensors="pt", padding=True, truncation=True)
input_ids = enc.input_ids
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
final_story = "".join(outputs)
conversation_id = save_chat_history(chat_history + [(message, final_story)])
yield f"Conversation ID: {conversation_id}"
chat_interface = gr.ChatInterface(
fn=generate,
stop_btn=None,
examples=[
["Can you explain briefly to me what is the Python programming language?"],
["I'm curious about Merge Sort."],
["Teach me about conditionals."]
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|