Spaces:
Build error
Build error
# import streamlit as st | |
# from transformers import pipeline | |
# pipe = pipeline('sentiment-analysis') | |
# text= st.text_area('enter some text') | |
# if st.button('Submit'): | |
# if text: | |
# out = pipe(text) | |
# st.write(out) | |
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
# Load the GPT tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2") | |
model = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2") | |
# Load the sentiment analysis pipeline | |
sentiment_pipeline = pipeline("sentiment-analysis") | |
# Text input field | |
user_input = st.text_area("Enter your prompt:") | |
if st.button("Submit"): | |
if user_input: | |
# Generate text using the GPT model | |
inputs = tokenizer(user_input, return_tensors="pt") | |
generated_ids = model.generate(**inputs) | |
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
# Perform sentiment analysis on both original and generated text | |
original_sentiment = sentiment_pipeline(user_input) | |
generated_sentiment = sentiment_pipeline(generated_text) | |
# Display the results | |
st.write("Original Text:") | |
st.write(user_input) | |
st.write("Original Text Sentiment:", original_sentiment) | |
st.write("Generated Text:") | |
st.write(generated_text) | |
st.write("Generated Text Sentiment:", generated_sentiment) | |