Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import ViTHybridImageProcessor, ViTHybridForImageClassification | |
from PIL import Image | |
import torch | |
# Load model and processor | |
model_name = "google/vit-hybrid-base-bit-384" | |
feature_extractor = ViTHybridImageProcessor.from_pretrained(model_name) | |
model = ViTHybridForImageClassification.from_pretrained(model_name) | |
# Function for prediction | |
def classify_image(image): | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_class_idx = logits.argmax(-1).item() | |
return model.config.id2label[predicted_class_idx] | |
# Gradio UI | |
iface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="ViT-Hybrid Image Classifier", | |
description="Upload an image to classify it using the ViT-Hybrid model.", | |
) | |
if __name__ == "__main__": | |
iface.launch() | |