Spaces:
Sleeping
Sleeping
File size: 10,490 Bytes
a5d3b8f 3bd8090 3c69fe4 3bd8090 bc0dbe0 60c2359 3bd8090 c43db93 9d6f9cb bc0dbe0 60c2359 3bd8090 60c2359 3bd8090 60c2359 a5d3b8f 60c2359 a5d3b8f 3bd8090 60c2359 3bd8090 60c2359 3bd8090 60c2359 a5d3b8f 60c2359 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 a5d3b8f 3bd8090 bc0dbe0 3bd8090 a5d3b8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import os
import requests
import json
import re
import gradio as gr
from pytube import YouTube
import whisper
import time
import pickle
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema.document import Document
from langchain.chains.mapreduce import MapReduceChain
from langchain.chains import ReduceDocumentsChain, MapReduceDocumentsChain
from langchain.chat_models import ChatOpenAI
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from PIL import Image
from io import BytesIO
openai_api_key = ""
# for API
# # ==
def youtube_text(link):
yt = YouTube(link)
yt.streams.filter(only_audio=True).first().download(output_path=".", filename="test.mp3")
start = time.time()
model = whisper.load_model("base")
text = model.transcribe("test.mp3")
end = time.time()
print(text["text"])
print(f"{end - start:.2f}sec")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=2000,
chunk_overlap=50,
length_function=len, )
full_docs = text["text"]
docs = [Document(page_content=x) for x in text_splitter.split_text(text["text"])]
split_docs = text_splitter.split_documents(docs)
with open("temp/split_example_small.pkl", "wb") as f:
pickle.dump(split_docs, f)
return split_docs, full_docs
def youtube_sum(split_docs, full_docs, API_KEY):
openai_key = API_KEY
llm = ChatOpenAI(temperature=0.7, openai_api_key=openai_key)
# Map prompt
map_template = """The following is a set of documents
{docs}
Based on this list of Video subtitles , please identify the main themes
Helpful Answer:"""
map_prompt = PromptTemplate.from_template(map_template)
# Reduce prompt
reduce_template = """The following is set of summaries:
{doc_summaries}
You need to output two things from the above Video Subtitles.
1. Write an executive summary
Read the following subtitles and write a summary that integrates them to quickly identify the main topics of the Video.
Your summary should.
- Must be written in Korean
- Be a 1~2 paragraph
- Be descriptive and detailed so that you can tell at a glance what is being said without having to look at the original Video.
- There are no more than three main topics in the video.
- Please also briefly describe the overall content of the video
2. Choose your keyword
The keywords have the following conditions
- Must be written in Korean
- Must be a single word
- Must be a noun
- Must be a word that appears in the Video
- Must be a word that is not a stopword
- Must be a word that is not a proper noun
- Must be a word that is not a number
- Must be a word that is not a verb
- Must be a word that is not a pronoun
- Must be a word that is not a preposition
- Must be a word that is not a conjunction
- Must be a word that is not an interjection
- Must be a word that is not an adjective
- Must be a word that is not an adverb
- Must be a word that is not a determiner
- Must be a word that is not a particle
- Must be a word that is not a numeral
- Output only one keyword
Here is an example of the final output
Summary: Summary of The video
Keyword: keyword
Don't output any other text outside of the given format
Helpful Answer:"""
reduce_prompt = PromptTemplate.from_template(reduce_template)
reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt)
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain, document_variable_name="doc_summaries"
)
# Combines and iteravely reduces the mapped documents
reduce_documents_chain = ReduceDocumentsChain(
# This is final chain that is called.
combine_documents_chain=combine_documents_chain,
# If documents exceed context for `StuffDocumentsChain`
collapse_documents_chain=combine_documents_chain,
# The maximum number of tokens to group documents into.
token_max=4000,
)
# 2. Map chain
map_chain = LLMChain(llm=llm, prompt=map_prompt)
# Combining documents by mapping a chain over them, then combining results
map_reduce_chain = MapReduceDocumentsChain(
# Map chain
llm_chain=map_chain,
# Reduce chain
reduce_documents_chain=reduce_documents_chain,
# The variable name in the llm_chain to put the documents in
document_variable_name="docs",
# Return the results of the map steps in the output
return_intermediate_steps=False,
)
# Run
result = map_reduce_chain.run(split_docs)
print(result)
with open("temp/result.txt", "w") as f:
f.write(result)
return result
def text_to_arr(result):
text = result
# Regular expression to find the keyword
match = re.search(r"Keyword:\s*(\w+)", text)
if match:
keyword = match.group(1)
print("Keyword:", keyword) # The keyword is in the first capturing group
else:
match = re.search(r"ํค์๋:\s*(\w+)", text)
keyword = match.group(1) # No keyword found
print("Keyword:", keyword)
return keyword
def aladin_api(keyword, selected_option):
aladin_key = 'ttbkangmj08250027001'
keyword = keyword
all_data = []
if selected_option == "์ฌํ":
key = keyword
print(key)
url = f"http://www.aladin.co.kr/ttb/api/ItemSearch.aspx?ttbkey={aladin_key}&Query={key}&QueryType=Keyword&Cover=Big&MaxResults=5" \
"&start=1&SearchTarget=Book&output=js&Sort=SalesPoint&Version=20131101&CategoryId=798&outofStockFilter=1"
response = requests.get(url)
response_json = json.loads(response.text)
all_data.append(response_json)
elif selected_option == "๊ณผํ":
key = keyword
print(key)
url = f"http://www.aladin.co.kr/ttb/api/ItemSearch.aspx?ttbkey={aladin_key}&Query={key}&QueryType=Keyword&Cover=Big&MaxResults=5" \
"&start=1&SearchTarget=Book&output=js&Sort=SalesPoint&Version=20131101&CategoryId=987&outofStockFilter=1"
response = requests.get(url)
response_json = json.loads(response.text)
all_data.append(response_json)
elif selected_option == "์์ค":
key = keyword
print(key)
url = f"http://www.aladin.co.kr/ttb/api/ItemSearch.aspx?ttbkey={aladin_key}&Query={key}&QueryType=Keyword&Cover=Big&MaxResults=5" \
"&start=1&SearchTarget=Book&output=js&Sort=SalesPoint&Version=20131101&CategoryId=1&outofStockFilter=1"
response = requests.get(url)
response_json = json.loads(response.text)
all_data.append(response_json)
elif selected_option == "๊ธ์ต":
key = keyword
url = f"http://www.aladin.co.kr/ttb/api/ItemSearch.aspx?ttbkey={aladin_key}&Query={key}&QueryType=Keyword&Cover=Big&MaxResults=5" \
"&start=1&SearchTarget=Book&output=js&Sort=SalesPoint&Version=20131101&CategoryId=170&outofStockFilter=1"
response = requests.get(url)
response_json = json.loads(response.text)
all_data.append(response_json)
# request ๋ณด๋ด๊ธฐ
all_data = json.dumps(all_data, ensure_ascii=False, indent=4)
with open("temp/book.json", "wb") as f:
f.write(all_data.encode("utf-8"))
print(type(all_data))
print(all_data)
return all_data
def book_output(book_json):
data = json.loads(book_json)
if len(data[0]['item'][0]) != 0:
title1 = data[0]['item'][0]['title']
book_link1 = data[0]['item'][0]['link']
cover_link1 = data[0]['item'][0]['cover']
response1 = requests.get(cover_link1)
image1 = Image.open(BytesIO(response1.content))
else:
title1 = "No Data"
book_link1 = "No Data"
image1 = Image.open("NO DATA.jpeg")
if len(data[0]['item'][1]) != 0:
title2 = data[0]['item'][1]['title']
book_link2 = data[0]['item'][1]['link']
cover_link2 = data[0]['item'][1]['cover']
response2 = requests.get(cover_link2)
image2 = Image.open(BytesIO(response2.content))
else:
title2 = "No Data"
book_link2 = "No Data"
image2 = Image.open("NO DATA.jpeg")
if len(data[0]['item'][2]) != 0:
title3 = data[0]['item'][2]['title']
book_link3 = data[0]['item'][2]['link']
cover_link3 = data[0]['item'][2]['cover']
response3 = requests.get(cover_link3)
image3 = Image.open(BytesIO(response3.content))
else:
title3 = "No Data"
book_link3 = "No Data"
image3 = Image.open("NO DATA.jpeg")
return title1, image1, title2, image2, title3, image3, book_link1, book_link2, book_link3
def get_title(API_KEY, link, selected_option):
docs, split_docs = youtube_text(link)
result = youtube_sum(docs, split_docs, API_KEY)
keywords = text_to_arr(result)
all_data = aladin_api(keywords, selected_option)
title1, image1, title2, image2, title3, image3, link1, link2, link3 = book_output(all_data)
return result, title1, image1, title2, image2, title3, image3, link1, link2, link3
# Define the list of options for the Dropdown
options_list = ["์ฌํ", "๊ณผํ", "์์ค", "๊ธ์ต"]
with gr.Blocks() as demo:
gr.Markdown("Paste your Youtube Link and get the book recommandation")
with gr.Column():
with gr.Row():
inp1 = gr.Textbox(label="Your OpenAI KEY")
inp2 = gr.Textbox(label="Input Link")
inp3 = gr.Dropdown(choices=options_list, label="Select a category")
btn = gr.Button("Find the book")
with gr.Column():
out1 = gr.Textbox(label="Summary")
with gr.Row():
out2 = gr.Textbox(label="Title1")
out4 = gr.Textbox(label="Title2")
out6 = gr.Textbox(label="Title3")
with gr.Row():
out3 = gr.Image(label="Image1")
out5 = gr.Image(label="Image2")
out7 = gr.Image(label="Image3")
with gr.Row():
out8 = gr.HTML(label="Book Link1")
out9 = gr.HTML(label="Book Link2")
out10 = gr.HTML(label="Book Link3")
btn.click(fn=get_title, inputs=[inp1, inp2, inp3],
outputs=[out1, out2, out3, out4, out5, out6, out7, out8, out9, out10])
demo.launch(share=True)
|