Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
|
3 |
+
# Install necessary packages
|
4 |
+
subprocess.run(["pip", "install", "-U", "git+https://github.com/huggingface/transformers.git"])
|
5 |
+
subprocess.run(["pip", "install", "-U", "git+https://github.com/huggingface/accelerate.git"])
|
6 |
+
subprocess.run(["pip", "install", "datasets"])
|
7 |
+
subprocess.run(["pip", "install", "evaluate"])
|
8 |
+
subprocess.run(["pip", "install", "torchvision"])
|
9 |
+
subprocess.run(["pip", "install", "scikit-learn"])
|
10 |
+
|
11 |
+
# Load the necessary libraries
|
12 |
+
from datasets import load_dataset
|
13 |
+
from transformers import AutoModelForImageClassification, AutoImageProcessor, TrainingArguments, Trainer
|
14 |
+
import torch
|
15 |
+
import torchvision.transforms as transforms
|
16 |
+
import numpy as np
|
17 |
+
from evaluate import load
|
18 |
+
|
19 |
+
# Load the dataset from Hugging Face Hub
|
20 |
+
dataset = load_dataset("DamarJati/Face-Mask-Detection")
|
21 |
+
|
22 |
+
# Define the labels
|
23 |
+
labels = dataset["train"].features["label"].names
|
24 |
+
label2id, id2label = dict(), dict()
|
25 |
+
for i, label in enumerate(labels):
|
26 |
+
label2id[label] = i
|
27 |
+
id2label[i] = label
|
28 |
+
|
29 |
+
# Load the pre-trained model and processor
|
30 |
+
model_checkpoint = "microsoft/resnet-50"
|
31 |
+
model = AutoModelForImageClassification.from_pretrained(model_checkpoint, num_labels=len(labels))
|
32 |
+
image_processor = AutoImageProcessor.from_pretrained(model_checkpoint)
|
33 |
+
|
34 |
+
# Define the image transformations
|
35 |
+
transform = transforms.Compose([
|
36 |
+
transforms.Resize((224, 224)),
|
37 |
+
transforms.ToTensor(),
|
38 |
+
transforms.Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
|
39 |
+
])
|
40 |
+
|
41 |
+
# Preprocess the dataset
|
42 |
+
def preprocess(example_batch):
|
43 |
+
example_batch["pixel_values"] = [transform(image.convert("RGB")) for image in example_batch["image"]]
|
44 |
+
return example_batch
|
45 |
+
|
46 |
+
dataset = dataset.with_transform(preprocess)
|
47 |
+
|
48 |
+
# Split the dataset into training and validation sets
|
49 |
+
splits = dataset["train"].train_test_split(test_size=0.3)
|
50 |
+
train_ds = splits['train']
|
51 |
+
val_ds = splits['test']
|
52 |
+
|
53 |
+
# Define the evaluation metric
|
54 |
+
metric = load("accuracy")
|
55 |
+
|
56 |
+
def compute_metrics(eval_pred):
|
57 |
+
predictions = np.argmax(eval_pred.predictions, axis=1)
|
58 |
+
return metric.compute(predictions=predictions, references=eval_pred.label_ids)
|
59 |
+
|
60 |
+
# Define the data collator
|
61 |
+
def collate_fn(examples):
|
62 |
+
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
63 |
+
labels = torch.tensor([example["label"] for example in examples])
|
64 |
+
return {"pixel_values": pixel_values, "labels": labels}
|
65 |
+
|
66 |
+
# Define the training arguments
|
67 |
+
args = TrainingArguments(
|
68 |
+
output_dir="./results",
|
69 |
+
per_device_eval_batch_size=128,
|
70 |
+
remove_unused_columns=False,
|
71 |
+
)
|
72 |
+
|
73 |
+
# Initialize the Trainer
|
74 |
+
trainer = Trainer(
|
75 |
+
model=model,
|
76 |
+
args=args,
|
77 |
+
eval_dataset=val_ds,
|
78 |
+
compute_metrics=compute_metrics,
|
79 |
+
data_collator=collate_fn,
|
80 |
+
)
|
81 |
+
|
82 |
+
# Evaluate the pre-trained model
|
83 |
+
metrics = trainer.evaluate()
|
84 |
+
print(metrics)
|