Spaces:
Runtime error
Runtime error
File size: 14,256 Bytes
4ddda00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import dash
import dash_bootstrap_components as dbc
from dash import dcc
from dash import html
from dash.dependencies import Input, Output, State
from typing import List, Tuple
from scipy.spatial.distance import cdist
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
df = pd.read_pickle('all_embeddings_with_splits.p')
app = dash.Dash(external_stylesheets=[dbc.themes.BOOTSTRAP])
app.layout = dbc.Container(
[
html.H1("Embedding Plots"),
html.Hr(),
html.Div(
[
dbc.Row(
[
dbc.Col(
[
html.Label('Algorithm:'),
dcc.Dropdown(
id="algorithm-dropdown",
options=[
{"label": "PCA", "value": "pca"},
{"label": "UMAP", "value": "umap"},
{"label": "tSNE", "value": "tsne"},
{"label": "PaCMAP", "value": "pacmap"},
],
value="pacmap",
clearable=False,
searchable=False,
style={"margin-bottom": "10px"}
),
html.Label('Number of dimensions:'),
dcc.Dropdown(
id="num-components-dropdown",
options=[
{"label": "2", "value": 2},
{"label": "3", "value": 3}
],
value=3,
clearable=False,
searchable=False,
style={"margin-bottom": "10px"}
),
html.Label('Color by:'),
dcc.Dropdown(
id="color-by",
options=[
{
"label": "Protein Classification",
"value": "classification"
},
{
"label": "Split (train/test/val/gpcr)",
"value": "split"
}
],
value="classification",
clearable=False,
searchable=False,
style={"margin-bottom": "10px"}
),
html.Span(
[
"Keep the top ",
dcc.Input(
id="top-n-classes",
type="number",
value=10,
min=1,
max=len(df["classification"].unique()),
step=1,
style={"width": "50px"}
),
" classes."
],
style={"margin-bottom": "20px"}
),
html.Br(),
dbc.Button(
"Update",
id="update-button",
color="primary",
n_clicks=0,
style={"width": "100%", "margin": "10px 0px"}
),
dbc.Container(
id="closest-points",
style={"max-height": "65vh", "overflow-y": "auto"}
),
],
width={"size": 2, "order": 1},
),
dbc.Col(
dcc.Graph(
id="embedding-graph",
style={"height": "100%", "width": "100%"},
),
width={"size": 10, "order": 2},
),
],
style={"height":"95vh"}
)
],
style={"height":"100hv"}
),
html.Hr(),
],
fluid=True,
)
def load_embedding(algorithm: str, num_components: int) -> np.array:
"""Loads the embeddings given an algorithm and number of dimensions.
Parameters
----------
algorithm : str
Algorithm used
num_components : int
see param name
Returns
-------
np.array
A Ax1280 numpy matrix with the embeddings.
"""
if algorithm == "pca":
embedding = np.load("pca.npy")
else:
embedding = np.load(f"{algorithm}{str(num_components)}d.npy")
return embedding
def get_top_n_classifications(df: pd.DataFrame, n: int) -> List[str]:
return df["classification"].value_counts().nlargest(n).index.tolist()
@app.callback(
Output("embedding-graph", "figure"),
[
Input("update-button", "n_clicks"),
],
[
State("algorithm-dropdown", "value"),
State("num-components-dropdown", "value"),
State("top-n-classes", "value"),
State("color-by", "value"),
]
)
def update_embedding_graph(n_clicks: int,
algorithm: str,
num_components: int,
top_n_classes: int,
color_by: str) -> go.Figure:
if n_clicks > 0:
embedding = load_embedding(algorithm, num_components)
if color_by == "split":
color_map = {
"gpcr": "red",
"train": "blue",
"val": "green",
"test": "orange",
"unknown": "grey",
}
color_series = df["splits"].copy()
df["color_series"] = color_series
else:
top_classes = get_top_n_classifications(df, n=top_n_classes)
is_top_n = df["classification"].isin(top_classes)
color_series = df["classification"].copy()
color_series[~is_top_n] = "other"
df["color_series"] = color_series
top_n_colors = px.colors.qualitative.Plotly[:top_n_classes]
color_map_top = {c: top_n_colors[i] for i, c in enumerate(top_classes)}
color_map = {c: color_map_top[c] if c in top_classes else 'grey' for i, c in enumerate(set(df['color_series']))}
if num_components == 3:
fig = go.Figure()
for c in df["color_series"].unique():
class_indices = np.where(df["color_series"] == c)[0]
data = embedding[class_indices]
fig.add_trace(
go.Scatter3d(
x=data[:,0],
y=data[:,1],
z=data[:,2],
mode='markers',
name=c,
marker=dict(
size=2.5,
color=color_map[c],
opacity=1 if color_map[c] != 'grey' else 0.3,
),
hovertemplate=
"<b>PDB ID</b>: %{customdata[0]}<br>" +
"<b>Classification</b>: %{customdata[1]}<br>" +
"<extra></extra>",
customdata=df.iloc[class_indices][['pdb_id', 'classification']]
)
)
fig.update_layout(
scene=dict(
xaxis=dict(showgrid=False, showticklabels=False, title=""),
yaxis=dict(showgrid=False, showticklabels=False, title=""),
zaxis=dict(showgrid=False, showticklabels=False, title=""),
),
)
fig.update_scenes(xaxis_visible=False, yaxis_visible=False,zaxis_visible=False )
elif num_components == 2:
fig = go.Figure()
for c in df["color_series"].unique():
class_indices = np.where(df["color_series"] == c)[0]
data = embedding[class_indices]
fig.add_trace(
go.Scatter(
x=data[:,0],
y=data[:,1],
mode='markers',
name=c,
marker=dict(
size=2.5,
color=color_map[c],
opacity=1 if color_map[c] != 'grey' else 0.3,
),
hovertemplate=
"<b>PDB ID</b>: %{customdata[0]}<br>" +
"<b>Classification</b>: %{customdata[1]}<br>"
"<extra></extra>",
customdata=df.iloc[class_indices][['pdb_id', 'classification']]
)
)
fig.update_traces(marker=dict(size=7.5), selector=dict(mode='markers'))
fig.update_scenes(xaxis_visible=False, yaxis_visible=False)
fig.update_layout(
legend=dict(
x=0,
y=1,
itemsizing='constant',
itemclick='toggle',
itemdoubleclick='toggleothers',
traceorder='reversed',
itemwidth=30,
),
margin=dict(l=0, r=0, b=0, t=0),
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
)
return fig
else:
raise dash.exceptions.PreventUpdate
#### GET CLOSEST POINTS
def extract_info_from_clickData(clickData: dict) -> Tuple[str, str]:
"""Extracts information from a clickData dictionary coming from clicking
a point in a scatter plot.
Speficially, it retrieves the pdb_id and the classification.
Shape of clickData:
{
"points": [
{
"x": 11.330583,
"y": 15.741333,
"z": -5.3435574,
"curveNumber": 2,
"pointNumber": 982,
"bbox": {
"x0": 704.3911532022826,
"x1": 704.3911532022826,
"y0": 393.5066681413661,
"y1": 393.5066681413661
},
"customdata": [
"1zfp",
"complex (signal transduction/peptide)"
]
}
]
}
Parameters
----------
clickData : dict
Contains the information of a point on a go.Figure graph.
Returns
-------
Tuple[]
_description_
"""
pdb_id = clickData["points"][0]["customdata"][0]
classification = clickData["points"][0]["customdata"][1]
return pdb_id, classification
def find_closest_n_points(df: pd.DataFrame,
embedding: np.array,
index: int = None,
pdb_id: str = None,
n: int = 20) -> Tuple[list, list]:
"""
Given an embedding array and a point index or pdb_id, finds the n closest
points to the given point.
Parameters:
-----------
embedding: np.ndarray
A 2D numpy array with the embedding coordinates.
point_index: int
The index of the point to which we want to find the closest points.
n: int
The number of closest points to retrieve.
Returns:
--------
closest_indices: list
A list with the indices of the n closest points to the given point.
"""
if pdb_id:
index = df.index[df["pdb_id"] == pdb_id].item()
distances = cdist(embedding[index, np.newaxis], embedding)
closest_indices = np.argsort(distances)[0][:n]
closest_ids = df.iloc[closest_indices]["pdb_id"].tolist()
closest_ids_classifications = df.iloc[closest_indices]["classification"].tolist()
return closest_ids, closest_ids_classifications
@app.callback(
Output("closest-points", "children"),
[
Input("embedding-graph", "clickData")
],
[
State("algorithm-dropdown", "value"),
State("num-components-dropdown", "value"),
]
)
def update_closest_points_div(
clickData: dict,
algorithm: str,
num_components: int) -> html.Table:
embedding = load_embedding(algorithm, num_components)
if clickData is not None:
pdb_id, _ = extract_info_from_clickData(clickData)
index = df.index[df["pdb_id"] == pdb_id].item()
closest_ids, closest_ids_classifications = find_closest_n_points(
df, embedding, index)
cards = []
for i in range(len(closest_ids)):
card = dbc.Card(
dbc.CardBody(
[
html.P(closest_ids[i], className="card-title"),
html.P(closest_ids_classifications[i], className="card-text"),
]
),
className="mb-3",
)
cards.append(card)
return cards
return html.Div(id="closest-points", children=[html.Div("Click on a data point to see the closest points.")])
if __name__ == "__main__":
app.run_server(debug=True) |