File size: 5,267 Bytes
9f54a3b 877a721 2506825 1311090 9f54a3b 1311090 2506825 9f54a3b 1311090 2506825 6307698 2506825 01d4f3f 6e2a9c8 6dac4be 6e2a9c8 fadd816 6e2a9c8 1311090 6e2a9c8 bc9d32e 6e2a9c8 1b110d7 1311090 6e2a9c8 9f54a3b 1311090 6307698 c7d20e2 6307698 c7d20e2 121058e 1311090 9e4c880 4700e8c 1311090 e8f8a5f 4f4ef99 8ccf576 ab1a8b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import streamlit as st
import requests
import os
from dotenv import load_dotenv
from requests.exceptions import RequestException, HTTPError, ConnectionError, Timeout, TooManyRedirects, JSONDecodeError
from textblob import TextBlob
# Load environment variables
load_dotenv()
# Function to reset conversation
def reset_conversation():
st.session_state.messages = []
st.session_state.ask_intervention = False
return None
# Function to interact with the selected model via the Together API
def interact_with_together_api(messages, model_link):
all_messages = []
if not any("role" in msg for msg in messages):
all_messages.append({"role": "system", "content": model_pre_instructions[selected_model]})
else:
all_messages.append({"role": "system", "content": f"Switched to model: {selected_model}"})
for human, assistant in messages:
all_messages.append({"role": "user", "content": human})
all_messages.append({"role": "assistant", "content": assistant})
all_messages.append({"role": "user", "content": messages[-1][1]})
url = "https://api.together.xyz/v1/chat/completions"
payload = {
"model": model_link,
"temperature": 1.05,
"top_p": 0.9,
"top_k": 50,
"repetition_penalty": 1,
"n": 1,
"messages": all_messages,
}
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {TOGETHER_API_KEY}",
}
try:
response = requests.post(url, json=payload, headers=headers)
response.raise_for_status()
response_data = response.json()
assistant_response = response_data["choices"][0]["message"]["content"]
return assistant_response
except (HTTPError, ConnectionError, Timeout, TooManyRedirects) as e:
st.error(f"Error communicating with the API: {e}")
return None
except JSONDecodeError as e:
st.error(f"Error decoding JSON response: {e}")
return None
except RequestException as e:
st.error(f"RequestException: {e}")
return None
# Function to perform sentiment analysis on the conversation
def analyze_sentiment(messages):
sentiments = []
for _, message in messages:
blob = TextBlob(message)
sentiment_score = blob.sentiment.polarity
sentiments.append(sentiment_score)
# Calculate average sentiment score
average_sentiment = sum(sentiments) / len(sentiments)
return average_sentiment
# Initialize chat history and session state attributes
if "messages" not in st.session_state:
st.session_state.messages = []
st.session_state.ask_intervention = False
# Create sidebar with model selection dropdown and reset button
model_links = {
"Addiction recovery AI": "NousResearch/Nous-Hermes-2-Yi-34B",
"Mental health AI": "NousResearch/Nous-Hermes-2-Yi-34B"
}
selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys()))
reset_button = st.sidebar.button('Reset Chat', on_click=reset_conversation)
# Accept user input with input validation
max_input_length = 100 # Maximum allowed character limit for user input
if prompt := st.chat_input(f"Hi, I'm {selected_model}, let's chat (Max {max_input_length} characters)"):
if len(prompt) > max_input_length:
st.error(f"Maximum input length exceeded. Please limit your input to {max_input_length} characters.")
else:
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append(("user", prompt))
# Interact with the selected model
assistant_response = interact_with_together_api(st.session_state.messages, model_links[selected_model])
if assistant_response is not None:
with st.empty():
st.markdown("AI is typing...")
st.empty()
st.markdown(assistant_response)
if any(keyword in prompt.lower() for keyword in ["human", "therapist", "someone", "died", "death", "help", "suicide", "suffering", "crisis", "emergency", "support", "depressed", "anxiety", "lonely", "desperate", "struggling", "counseling", "distressed", "hurt", "pain", "grief", "trauma", "abuse", "danger", "risk", "urgent", "need assistance"]):
if not st.session_state.ask_intervention:
if st.button("After the analyzing our session you may need some extra help, so you can reach out to a certified therapist at +25493609747 Name: Ogega feel free to talk"):
st.write("You can reach out to a certified therapist at +25493609747.")
st.session_state.messages.append(("assistant", assistant_response))
# Display conversation insights
st.sidebar.subheader("Conversation Insights")
average_sentiment = analyze_sentiment(st.session_state.messages)
st.sidebar.write(f"Average Sentiment: {average_sentiment}")
# Add logo and text to the sidebar
st.sidebar.image("https://assets.isu.pub/document-structure/221118065013-a6029cf3d563afaf9b946bb9497d45d4/v1/2841525b232adaef7bd0efe1da81a4c5.jpeg", width=200)
st.sidebar.write("A product proudly developed by Kisii University")
|