Update app.py
Browse files
app.py
CHANGED
@@ -35,13 +35,54 @@ def call_ai_model(all_message):
|
|
35 |
|
36 |
return response
|
37 |
|
38 |
-
# Function to request
|
39 |
-
def
|
40 |
all_message = (
|
41 |
-
f"Provide the expected sports performance value (as a
|
42 |
)
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
generated_text = ""
|
46 |
for line in response.iter_lines():
|
47 |
if line:
|
@@ -52,42 +93,47 @@ def get_performance_data(temperature):
|
|
52 |
json_data = json.loads(line_content)
|
53 |
if "choices" in json_data:
|
54 |
delta = json_data["choices"][0]["delta"]
|
55 |
-
if "content" in delta:
|
56 |
generated_text += delta["content"]
|
57 |
except json.JSONDecodeError:
|
58 |
continue
|
59 |
-
try:
|
60 |
-
performance_value = float(generated_text.strip())
|
61 |
-
return performance_value
|
62 |
-
except ValueError:
|
63 |
-
continue
|
64 |
|
65 |
-
|
66 |
-
st.title("Climate Impact on Sports Performance and Infrastructure")
|
67 |
-
st.write("Analyze and visualize the impact of climate conditions on sports performance and infrastructure.")
|
68 |
|
69 |
-
#
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
performance_values.append(performance_value)
|
83 |
-
|
84 |
|
|
|
85 |
# Generate line graph
|
86 |
fig, ax = plt.subplots()
|
87 |
ax.plot(temperatures, performance_values, marker='o')
|
88 |
ax.set_xlabel('Temperature (°C)')
|
89 |
ax.set_ylabel('Performance Score')
|
90 |
-
ax.set_title('Temperature vs. Sports Performance')
|
91 |
st.pyplot(fig)
|
92 |
|
93 |
except ValueError as ve:
|
|
|
35 |
|
36 |
return response
|
37 |
|
38 |
+
# Function to request numeric performance data from AI
|
39 |
+
def get_numeric_performance_data(temperature):
|
40 |
all_message = (
|
41 |
+
f"Provide the expected numeric sports performance value (as a score) at a temperature of {temperature}°C."
|
42 |
)
|
43 |
+
response = call_ai_model(all_message)
|
44 |
+
generated_text = ""
|
45 |
+
for line in response.iter_lines():
|
46 |
+
if line:
|
47 |
+
line_content = line.decode('utf-8')
|
48 |
+
if line_content.startswith("data: "):
|
49 |
+
line_content = line_content[6:] # Strip "data: " prefix
|
50 |
+
try:
|
51 |
+
json_data = json.loads(line_content)
|
52 |
+
if "choices" in json_data:
|
53 |
+
delta = json_data["choices"][0]["delta"]
|
54 |
+
if "content" in delta and delta["content"].strip().replace('.', '', 1).isdigit():
|
55 |
+
return float(delta["content"].strip())
|
56 |
+
except json.JSONDecodeError:
|
57 |
+
continue
|
58 |
+
return None
|
59 |
+
|
60 |
+
# Streamlit app layout
|
61 |
+
st.title("Climate Impact on Sports Performance and Infrastructure")
|
62 |
+
st.write("Analyze and visualize the impact of climate conditions on sports performance and infrastructure.")
|
63 |
+
|
64 |
+
# Inputs for climate conditions
|
65 |
+
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
|
66 |
+
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
|
67 |
+
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
|
68 |
+
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5)
|
69 |
+
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100)
|
70 |
+
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
|
71 |
+
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
|
72 |
+
|
73 |
+
if st.button("Generate Prediction"):
|
74 |
+
all_message = (
|
75 |
+
f"Assess the impact on sports performance and infrastructure based on climate conditions: "
|
76 |
+
f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
|
77 |
+
f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa."
|
78 |
+
)
|
79 |
+
|
80 |
+
try:
|
81 |
+
with st.spinner("Analyzing climate conditions..."):
|
82 |
+
response = call_ai_model(all_message)
|
83 |
+
|
84 |
+
st.success("Initial analysis complete. Generating detailed predictions...")
|
85 |
+
|
86 |
generated_text = ""
|
87 |
for line in response.iter_lines():
|
88 |
if line:
|
|
|
93 |
json_data = json.loads(line_content)
|
94 |
if "choices" in json_data:
|
95 |
delta = json_data["choices"][0]["delta"]
|
96 |
+
if "content" in delta and delta["content"].strip().replace('.', '', 1).isdigit():
|
97 |
generated_text += delta["content"]
|
98 |
except json.JSONDecodeError:
|
99 |
continue
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
st.success("Detailed predictions generated.")
|
|
|
|
|
102 |
|
103 |
+
# Prepare data for visualization
|
104 |
+
results_data = {
|
105 |
+
"Condition": ["Temperature", "Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"],
|
106 |
+
"Value": [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure]
|
107 |
+
}
|
108 |
+
results_df = pd.DataFrame(results_data)
|
109 |
|
110 |
+
# Display results in a table
|
111 |
+
st.subheader("Results Summary")
|
112 |
+
st.table(results_df)
|
113 |
+
|
114 |
+
# Display prediction
|
115 |
+
st.markdown("**Predicted Impact on Performance and Infrastructure:**")
|
116 |
+
st.markdown(generated_text.strip())
|
117 |
+
|
118 |
+
st.success("Generating performance data...")
|
119 |
+
|
120 |
+
# Generate numeric performance data for different temperatures
|
121 |
+
temperatures = range(-10, 41, 5) # Temperatures from -10°C to 40°C in 5°C increments
|
122 |
+
performance_values = []
|
123 |
+
for temp in temperatures:
|
124 |
+
st.spinner(f"Fetching performance data for {temp}°C...")
|
125 |
+
performance_value = get_numeric_performance_data(temp)
|
126 |
+
if performance_value is not None:
|
127 |
performance_values.append(performance_value)
|
128 |
+
time.sleep(1)
|
129 |
|
130 |
+
if performance_values:
|
131 |
# Generate line graph
|
132 |
fig, ax = plt.subplots()
|
133 |
ax.plot(temperatures, performance_values, marker='o')
|
134 |
ax.set_xlabel('Temperature (°C)')
|
135 |
ax.set_ylabel('Performance Score')
|
136 |
+
ax.set_title('Temperature vs. Numeric Sports Performance')
|
137 |
st.pyplot(fig)
|
138 |
|
139 |
except ValueError as ve:
|