Spaces:
Sleeping
Sleeping
File size: 5,232 Bytes
291564a 1180d04 291564a d0aa8cd 291564a d0aa8cd 291564a d0aa8cd 291564a 1180d04 291564a d0aa8cd 291564a 1180d04 291564a 1180d04 291564a 1180d04 291564a 1180d04 d0aa8cd 291564a 7909723 d0aa8cd 1180d04 291564a 306b289 79b79bf 306b289 79b79bf 306b289 291564a 219e01a 291564a 219e01a 1428e8e 219e01a 291564a 1180d04 291564a 6d345cb af003e9 1180d04 48f97c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import gradio as gr
import torch
import uuid
import json
import librosa
import os
import tempfile
import soundfile as sf
import scipy.io.wavfile as wav
from transformers import pipeline, VitsModel, AutoTokenizer, set_seed
from nemo.collections.asr.models import EncDecMultiTaskModel
# Constants
SAMPLE_RATE = 16000 # Hz
# load ASR model
canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b')
# update dcode params
decode_cfg = canary_model.cfg.decoding
decode_cfg.beam.beam_size = 1
canary_model.change_decoding_strategy(decode_cfg)
# load TTS model
# tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
# tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
# Function to convert audio to text using ASR
def gen_text(audio_filepath, action):
if audio_filepath is None:
raise gr.Error("Please provide some input audio.")
utt_id = uuid.uuid4()
with tempfile.TemporaryDirectory() as tmpdir:
# Convert to 16 kHz
data, sr = librosa.load(audio_filepath, sr=None, mono=True)
if sr != SAMPLE_RATE:
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
converted_audio_filepath = os.path.join(tmpdir, f"{utt_id}.wav")
sf.write(converted_audio_filepath, data, SAMPLE_RATE)
# Transcribe audio
duration = len(data) / SAMPLE_RATE
manifest_data = {
"audio_filepath": converted_audio_filepath,
"taskname": action,
"source_lang": "en",
"target_lang": "en" if action=="asr" else "fr",
"pnc": "no",
"answer": "predict",
"duration": str(duration),
}
manifest_filepath = os.path.join(tmpdir, f"{utt_id}.json")
with open(manifest_filepath, 'w') as fout:
fout.write(json.dumps(manifest_data))
predicted_text = canary_model.transcribe(manifest_filepath)[0]
# if duration < 40:
# predicted_text = canary_model.transcribe(manifest_filepath)[0]
# else:
# predicted_text = get_buffered_pred_feat_multitaskAED(
# frame_asr,
# canary_model.cfg.preprocessor,
# model_stride_in_secs,
# canary_model.device,
# manifest=manifest_filepath,
# )[0].text
return predicted_text
# Function to convert text to speech using TTS
def gen_speech(text, lang):
set_seed(555) # Make it deterministic
if lang=="en":
model = "facebook/mms-tts-eng"
elif lang=="fr":
model = "facebook/mms-tts-fra"
# load TTS model
tts_model = VitsModel.from_pretrained(model)
tts_tokenizer = AutoTokenizer.from_pretrained(model)
input_text = tts_tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = tts_model(**input_text)
waveform_np = outputs.waveform[0].cpu().numpy()
output_file = f"{str(uuid.uuid4())}.wav"
wav.write(output_file, rate=tts_model.config.sampling_rate, data=waveform_np)
return output_file
# Root function for Gradio interface
def start_process(audio_filepath, source_lang, target_lang):
transcription = gen_text(audio_filepath, "asr")
print("Done transcribing")
translation = gen_text(audio_filepath, "s2t_translation")
print("Done translation")
audio_output_filepath = gen_speech(transcription, target_lang)
print("Done speaking")
return transcription, translation, audio_output_filepath
# Create Gradio interface
playground = gr.Blocks()
with playground:
with gr.Row():
with gr.Column():
source_lang = gr.Dropdown(
choices=["en", "de", "es", "fr"], value="en", label="Source Language"
)
with gr.Column():
target_lang = gr.Dropdown(
choices=["en", "de", "es", "fr"], value="fr", label="Target Language"
)
with gr.Row():
with gr.Column():
input_audio = gr.Audio(sources=["microphone"], type="filepath", label="Input Audio")
with gr.Column():
translated_speech = gr.Audio(type="filepath", label="Generated Speech")
with gr.Row():
with gr.Column():
transcipted_text = gr.Textbox(label="Transcription")
with gr.Column():
translated_text = gr.Textbox(label="Translation")
with gr.Row():
with gr.Column():
submit_button = gr.Button(value="Start Process", variant="primary")
with gr.Column():
clear_button = gr.ClearButton(components=[input_audio, source_lang, target_lang, transcipted_text, translated_text, translated_speech], value="Clear")
# with gr.Row():
# gr.Examples(
# examples=["sample.wav"],
# inputs=[input_audio],
# outputs=[transcipted_text, translated_speech, translated_text],
# run_on_click=True, cache_examples=True, fn=start_process
# )
submit_button.click(start_process, inputs=[input_audio, source_lang, target_lang], outputs=[transcipted_text, translated_text, translated_speech])
playground.launch() |