File size: 3,924 Bytes
291564a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48f97c1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import gradio as gr
import torch
import uuid
import json
import librosa
import os
import tempfile
import soundfile as sf
import scipy.io.wavfile as wav

from transformers import pipeline, VitsModel, AutoTokenizer, set_seed
from nemo.collections.asr.models import EncDecMultiTaskModel

# Constants
SAMPLE_RATE = 16000  # Hz

# load ASR model
canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b')

# update dcode params
decode_cfg = canary_model.cfg.decoding
decode_cfg.beam.beam_size = 1
canary_model.change_decoding_strategy(decode_cfg)

# load TTS model
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")

# Function to convert audio to text using ASR
def transcribe(audio_filepath):
    if audio_filepath is None:
        raise gr.Error("Please provide some input audio.")
    
    utt_id = uuid.uuid4()
    with tempfile.TemporaryDirectory() as tmpdir:
        # Convert to 16 kHz
        data, sr = librosa.load(audio_filepath, sr=None, mono=True)
        if sr != SAMPLE_RATE:
            data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
        converted_audio_filepath = os.path.join(tmpdir, f"{utt_id}.wav")
        sf.write(converted_audio_filepath, data, SAMPLE_RATE)

        # Transcribe audio
        duration = len(data) / SAMPLE_RATE
        manifest_data = {
            "audio_filepath": converted_audio_filepath,
            "taskname": "asr",
            "source_lang": "en",
            "target_lang": "en",
            "pnc": "no",
            "answer": "predict",
            "duration": str(duration),
        }
        manifest_filepath = os.path.join(tmpdir, f"{utt_id}.json")
        with open(manifest_filepath, 'w') as fout:
            fout.write(json.dumps(manifest_data))
        
        if duration < 40:
            transcription = canary_model.transcribe(manifest_filepath)[0]
        else:
            transcription = get_buffered_pred_feat_multitaskAED(
                frame_asr,
                canary_model.cfg.preprocessor,
                model_stride_in_secs,
                canary_model.device,
                manifest=manifest_filepath,
            )[0].text
    
    return transcription

# Function to convert text to speech using TTS
def gen_speech(text):
    set_seed(555)  # Make it deterministic
    input_text = tts_tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        outputs = tts_model(**input_text)
    waveform_np = outputs.waveform[0].cpu().numpy()
    output_file = f"{str(uuid.uuid4())}.wav"
    wav.write(output_file, rate=tts_model.config.sampling_rate, data=waveform_np)
    return output_file

# Root function for Gradio interface
def start_process(audio_filepath):
    transcription = transcribe(audio_filepath)
    print("Done transcribing")
    translation = "working in progress"   
    audio_output_filepath = gen_speech(transcription)
    print("Done speaking")   
    return transcription, translation, audio_output_filepath

    
# Create Gradio interface
playground = gr.Blocks()

with playground:
    with gr.Row():
        with gr.Column():
            input_audio = gr.Audio(sources=["microphone"], type="filepath", label="Input Audio")
            transcipted_text = gr.Textbox(label="Transcription")
        with gr.Column():
            translated_speech = gr.Audio(type="filepath", label="Generated Speech")
            translated_text = gr.Textbox(label="Translation")

    with gr.Row():
        with gr.Column():
            submit_button = gr.Button(value="Start Process", variant="primary")
        with gr.Column():
            clear_button = gr.ClearButton(components=[input_audio, transcipted_text, translated_speech, translated_text], value="Clear")    

    submit_button.click(start_process, inputs=[input_audio], outputs=[transcipted_text, translated_speech, translated_text])

playground.launch()