Spaces:
Sleeping
Sleeping
File size: 3,924 Bytes
291564a 48f97c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import gradio as gr
import torch
import uuid
import json
import librosa
import os
import tempfile
import soundfile as sf
import scipy.io.wavfile as wav
from transformers import pipeline, VitsModel, AutoTokenizer, set_seed
from nemo.collections.asr.models import EncDecMultiTaskModel
# Constants
SAMPLE_RATE = 16000 # Hz
# load ASR model
canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b')
# update dcode params
decode_cfg = canary_model.cfg.decoding
decode_cfg.beam.beam_size = 1
canary_model.change_decoding_strategy(decode_cfg)
# load TTS model
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
# Function to convert audio to text using ASR
def transcribe(audio_filepath):
if audio_filepath is None:
raise gr.Error("Please provide some input audio.")
utt_id = uuid.uuid4()
with tempfile.TemporaryDirectory() as tmpdir:
# Convert to 16 kHz
data, sr = librosa.load(audio_filepath, sr=None, mono=True)
if sr != SAMPLE_RATE:
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
converted_audio_filepath = os.path.join(tmpdir, f"{utt_id}.wav")
sf.write(converted_audio_filepath, data, SAMPLE_RATE)
# Transcribe audio
duration = len(data) / SAMPLE_RATE
manifest_data = {
"audio_filepath": converted_audio_filepath,
"taskname": "asr",
"source_lang": "en",
"target_lang": "en",
"pnc": "no",
"answer": "predict",
"duration": str(duration),
}
manifest_filepath = os.path.join(tmpdir, f"{utt_id}.json")
with open(manifest_filepath, 'w') as fout:
fout.write(json.dumps(manifest_data))
if duration < 40:
transcription = canary_model.transcribe(manifest_filepath)[0]
else:
transcription = get_buffered_pred_feat_multitaskAED(
frame_asr,
canary_model.cfg.preprocessor,
model_stride_in_secs,
canary_model.device,
manifest=manifest_filepath,
)[0].text
return transcription
# Function to convert text to speech using TTS
def gen_speech(text):
set_seed(555) # Make it deterministic
input_text = tts_tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = tts_model(**input_text)
waveform_np = outputs.waveform[0].cpu().numpy()
output_file = f"{str(uuid.uuid4())}.wav"
wav.write(output_file, rate=tts_model.config.sampling_rate, data=waveform_np)
return output_file
# Root function for Gradio interface
def start_process(audio_filepath):
transcription = transcribe(audio_filepath)
print("Done transcribing")
translation = "working in progress"
audio_output_filepath = gen_speech(transcription)
print("Done speaking")
return transcription, translation, audio_output_filepath
# Create Gradio interface
playground = gr.Blocks()
with playground:
with gr.Row():
with gr.Column():
input_audio = gr.Audio(sources=["microphone"], type="filepath", label="Input Audio")
transcipted_text = gr.Textbox(label="Transcription")
with gr.Column():
translated_speech = gr.Audio(type="filepath", label="Generated Speech")
translated_text = gr.Textbox(label="Translation")
with gr.Row():
with gr.Column():
submit_button = gr.Button(value="Start Process", variant="primary")
with gr.Column():
clear_button = gr.ClearButton(components=[input_audio, transcipted_text, translated_speech, translated_text], value="Clear")
submit_button.click(start_process, inputs=[input_audio], outputs=[transcipted_text, translated_speech, translated_text])
playground.launch() |