Spaces:
Runtime error
Runtime error
File size: 14,827 Bytes
2f72267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
from functools import partial
import os
from PIL import Image, ImageOps
import random
import cv2
from diffusers.models import AutoencoderKL
import gradio as gr
import numpy as np
from segment_anything import build_sam, SamPredictor
from tqdm import tqdm
from transformers import CLIPModel, AutoProcessor, CLIPVisionModel
import torch
from torchvision import transforms
from diffusion import create_diffusion
from model import UNet2DDragConditionModel
TITLE = '''DragAPart: Learning a Part-Level Motion Prior for Articulated Objects'''
DESCRIPTION = """
<div>
Try <a href='https://arxiv.org/abs/24xx.xxxxx'><b>DragAPart</b></a> yourself to manipulate your favorite articulated objects in 2 seconds!
</div>
"""
INSTRUCTION = '''
2 steps to get started:
- Upload an image of an articulated object.
- Add one or more drags on the object to specify the part-level interactions.
How to add drags:
- To add a drag, first click on the starting point of the drag, then click on the ending point of the drag, on the Input Image (leftmost).
- You can add up to 10 drags, but we suggest one drag per part.
- After every click, the drags will be visualized on the Image with Drags (second from left).
- If the last drag is not completed (you specified the starting point but not the ending point), it will simply be ignored.
- Have fun dragging!
Then, you will be prompted to verify the object segmentation. Once you confirm that the segmentation is decent, the output image will be generated in seconds!
'''
PREPROCESS_INSTRUCTION = '''
Segmentation is needed if it is not already provided through an alpha channel in the input image.
You don't need to tick this box if you have chosen one of the example images.
If you have uploaded one of your own images, it is very likely that you will need to tick this box.
You should verify that the preprocessed image is object-centric (i.e., clearly contains a single object) and has white background.
'''
def center_and_square_image(pil_image_rgba, drags):
image = pil_image_rgba
alpha = np.array(image)[:, :, 3] # Extract the alpha channel
cy, cx = np.round(np.mean(np.nonzero(alpha), axis=1)).astype(int)
side_length = max(image.width, image.height)
padded_image = ImageOps.expand(
image,
(side_length // 2, side_length // 2, side_length // 2, side_length // 2),
fill=(255, 255, 255, 255)
)
left, top = cx, cy
new_drags = []
for d in drags:
x, y = d
new_x, new_y = (x + side_length // 2 - cx) / side_length, (y + side_length // 2 - cy) / side_length
new_drags.append((new_x, new_y))
# Crop or pad the image as needed to make it centered around (cx, cy)
image = padded_image.crop((left, top, left + side_length, top + side_length))
# Resize the image to 256x256
image = image.resize((256, 256), Image.Resampling.LANCZOS)
return image, new_drags
def sam_init():
sam_checkpoint = os.path.join(os.path.dirname(__file__), "ckpts", "sam_vit_h_4b8939.pth")
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to("cuda"))
return predictor
def model_init():
model_checkpoint = os.path.join(os.path.dirname(__file__), "ckpts", "drag-a-part-final.pt")
model = UNet2DDragConditionModel.from_pretrained_sd(
os.path.join(os.path.dirname(__file__), "ckpts", "stable-diffusion-v1-5"),
unet_additional_kwargs=dict(
sample_size=32,
flow_original_res=False,
input_concat_dragging=False,
attn_concat_dragging=True,
use_drag_tokens=False,
single_drag_token=False,
one_sided_attn=True,
flow_in_old_version=False,
),
load=False,
)
model.load_state_dict(torch.load(model_checkpoint)["model"])
model = model.to("cuda")
return model
def sam_segment(predictor, input_image, drags, foreground_points=None):
image = np.asarray(input_image)
predictor.set_image(image)
with torch.no_grad():
masks_bbox, _, _ = predictor.predict(
point_coords=foreground_points if foreground_points is not None else None,
point_labels=np.ones(len(foreground_points)) if foreground_points is not None else None,
multimask_output=True
)
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
out_image[:, :, :3] = image
out_image[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
torch.cuda.empty_cache()
out_image, new_drags = center_and_square_image(Image.fromarray(out_image, mode="RGBA"), drags)
return out_image, new_drags
def get_point(img, sel_pix, evt: gr.SelectData):
sel_pix.append(evt.index)
points = []
img = np.array(img)
height = img.shape[0]
arrow_width_large = 7 * height // 256
arrow_width_small = 3 * height // 256
circle_size = 5 * height // 256
with_alpha = img.shape[2] == 4
for idx, point in enumerate(sel_pix):
if idx % 2 == 1:
cv2.circle(img, tuple(point), circle_size, (0, 0, 255, 255) if with_alpha else (0, 0, 255), -1)
else:
cv2.circle(img, tuple(point), circle_size, (255, 0, 0, 255) if with_alpha else (255, 0, 0), -1)
points.append(tuple(point))
if len(points) == 2:
cv2.arrowedLine(img, points[0], points[1], (0, 0, 0, 255) if with_alpha else (0, 0, 0), arrow_width_large)
cv2.arrowedLine(img, points[0], points[1], (255, 255, 0, 255) if with_alpha else (0, 0, 0), arrow_width_small)
points = []
return img if isinstance(img, np.ndarray) else np.array(img)
def clear_drag():
return []
def preprocess_image(SAM_predictor, img, chk_group, drags):
if img is None:
gr.Warning("No image is specified. Please specify an image before preprocessing.")
return None, drags
if drags is None or len(drags) == 0:
foreground_points = None
else:
foreground_points = np.array([drags[i] for i in range(0, len(drags), 2)])
if len(drags) == 0:
gr.Warning("No drags are specified. We recommend first specifying the drags before preprocessing.")
new_drags = drags
if "Preprocess with Segmentation" in chk_group:
img_np = np.array(img)
rgb_img = img_np[..., :3]
img, new_drags = sam_segment(
SAM_predictor,
rgb_img,
drags,
foreground_points=foreground_points,
)
else:
new_drags = [(d[0] / img.width, d[1] / img.height) for d in drags]
img = np.array(img).astype(np.float32)
processed_img = img[..., :3] * img[..., 3:] / 255. + 255. * (1 - img[..., 3:] / 255.)
image_pil = Image.fromarray(processed_img.astype(np.uint8), mode="RGB")
processed_img = image_pil.resize((256, 256), Image.LANCZOS)
return processed_img, new_drags
def single_image_sample(
model,
diffusion,
x_cond,
x_cond_clip,
rel,
cfg_scale,
x_cond_extra,
drags,
hidden_cls,
num_steps=50,
):
z = torch.randn(2, 4, 32, 32).to("cuda")
# Prepare input for classifer-free guidance
rel = torch.cat([rel, rel], dim=0)
x_cond = torch.cat([x_cond, x_cond], dim=0)
x_cond_clip = torch.cat([x_cond_clip, x_cond_clip], dim=0)
x_cond_extra = torch.cat([x_cond_extra, x_cond_extra], dim=0)
drags = torch.cat([drags, drags], dim=0)
hidden_cls = torch.cat([hidden_cls, hidden_cls], dim=0)
model_kwargs = dict(
x_cond=x_cond,
x_cond_extra=x_cond_extra,
cfg_scale=cfg_scale,
hidden_cls=hidden_cls,
drags=drags,
)
# Denoising
step_delta = diffusion.num_timesteps // num_steps
for i in tqdm(range(num_steps)):
with torch.no_grad():
samples = diffusion.p_sample(
model.forward_with_cfg,
z,
torch.Tensor([diffusion.num_timesteps - 1 - step_delta * i]).long().to("cuda").repeat(z.shape[0]),
clip_denoised=False,
model_kwargs=model_kwargs,
)["pred_xstart"]
if i != num_steps - 1:
z = diffusion.q_sample(
samples,
torch.Tensor([diffusion.num_timesteps - 1 - step_delta * i]).long().to("cuda").repeat(z.shape[0])
)
samples, _ = samples.chunk(2, dim=0)
return samples
def generate_image(model, image_processor, vae, clip_model, clip_vit, diffusion, img_cond, seed, cfg_scale, drags_list):
if img_cond is None:
gr.Warning("Please preprocess the image first.")
return None
with torch.no_grad():
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
pixels_cond = transforms.ToTensor()(img_cond.astype(np.float32) / 127.5 - 1).unsqueeze(0).to("cuda")
cond_pixel_preprocessed_for_clip = image_processor(
images=Image.fromarray(img_cond), return_tensors="pt"
).pixel_values.to("cuda")
with torch.no_grad():
x_cond = vae.encode(pixels_cond).latent_dist.sample().mul_(0.18215)
cond_clip_features = clip_model.get_image_features(cond_pixel_preprocessed_for_clip)
cls_embedding = torch.stack(
clip_vit(pixel_values=cond_pixel_preprocessed_for_clip, output_hidden_states=True).hidden_states,
dim=1
)[:, :, 0]
# dummies
rel = torch.zeros(1, 4).to("cuda")
x_cond_extra = torch.zeros(1, 3, 32, 32).to("cuda")
drags = torch.zeros(1, 10, 4).to("cuda")
for i in range(0, len(drags_list), 2):
if i + 1 == len(drags_list):
gr.Warning("The ending point of the last drag is not specified. The last drag is ignored.")
break
idx = i // 2
drags[0, idx, 0], drags[0, idx, 1], drags[0, idx, 2], drags[0, idx, 3] = \
drags_list[i][0], drags_list[i][1], drags_list[i + 1][0], drags_list[i + 1][1]
if idx == 9:
break
samples = single_image_sample(
model,
diffusion,
x_cond,
cond_clip_features,
rel,
cfg_scale,
x_cond_extra,
drags,
cls_embedding,
num_steps=50,
)
with torch.no_grad():
images = vae.decode(samples / 0.18215).sample
images = ((images + 1)[0].permute(1, 2, 0) * 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
return images
sam_predictor = sam_init()
model = model_init()
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-ema").to('cuda')
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to('cuda')
clip_vit = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14").to('cuda')
image_processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
diffusion = create_diffusion(
timestep_respacing="",
learn_sigma=False,
)
with gr.Blocks(title=TITLE) as demo:
gr.Markdown("# " + DESCRIPTION)
with gr.Row():
gr.Markdown(INSTRUCTION)
drags = gr.State(value=[])
with gr.Row(variant="panel"):
with gr.Column(scale=1):
input_image = gr.Image(
interactive=True,
type='pil',
image_mode="RGBA",
width=256,
show_label=True,
label="Input Image",
)
example_folder = os.path.join(os.path.dirname(__file__), "./example_images")
example_fns = [os.path.join(example_folder, example) for example in sorted(os.listdir(example_folder))]
gr.Examples(
examples=example_fns,
inputs=[input_image],
cache_examples=False,
label='Feel free to use one of our provided examples!',
examples_per_page=30
)
input_image.change(
fn=clear_drag,
outputs=[drags],
)
with gr.Column(scale=1):
drag_image = gr.Image(
type="numpy",
label="Image with Drags",
interactive=False,
width=256,
image_mode="RGB",
)
input_image.select(
fn=get_point,
inputs=[input_image, drags],
outputs=[drag_image],
)
with gr.Column(scale=1):
processed_image = gr.Image(
type='numpy',
label="Processed Image",
interactive=False,
width=256,
height=256,
image_mode='RGB',
)
processed_image_highres = gr.Image(type='pil', image_mode='RGB', visible=False)
with gr.Accordion('Advanced preprocessing options', open=True):
with gr.Row():
with gr.Column():
preprocess_chk_group = gr.CheckboxGroup(
['Preprocess with Segmentation'],
label='Segment',
info=PREPROCESS_INSTRUCTION
)
preprocess_button = gr.Button(
value="Preprocess Input Image",
)
preprocess_button.click(
fn=partial(preprocess_image, sam_predictor),
inputs=[input_image, preprocess_chk_group, drags],
outputs=[processed_image, drags],
queue=True,
)
with gr.Column(scale=1):
generated_image = gr.Image(
type="numpy",
label="Generated Image",
interactive=False,
height=256,
width=256,
image_mode="RGB",
)
with gr.Accordion('Advanced generation options', open=True):
with gr.Row():
with gr.Column():
seed = gr.Slider(label="seed", value=0, minimum=0, maximum=10000, step=1, randomize=False)
cfg_scale = gr.Slider(
label="classifier-free guidance weight",
value=5, minimum=1, maximum=10, step=0.1
)
generate_button = gr.Button(
value="Generate Image",
)
generate_button.click(
fn=partial(generate_image, model, image_processor, vae, clip_model, clip_vit, diffusion),
inputs=[processed_image, seed, cfg_scale, drags],
outputs=[generated_image],
)
demo.launch(share=True)
|