Spaces:
Runtime error
Runtime error
Fix
Browse files
app.py
CHANGED
@@ -92,13 +92,11 @@ def model_init():
|
|
92 |
load=False,
|
93 |
)
|
94 |
model.load_state_dict(torch.load(model_checkpoint, map_location="cpu")["model"])
|
95 |
-
|
96 |
-
return model
|
97 |
|
98 |
-
@spaces.GPU
|
99 |
def sam_segment(predictor, input_image, drags, foreground_points=None):
|
100 |
image = np.asarray(input_image)
|
101 |
-
predictor = predictor.to("cuda")
|
102 |
predictor.set_image(image)
|
103 |
|
104 |
with torch.no_grad():
|
@@ -173,7 +171,7 @@ def preprocess_image(SAM_predictor, img, chk_group, drags):
|
|
173 |
processed_img = image_pil.resize((256, 256), Image.LANCZOS)
|
174 |
return processed_img, new_drags
|
175 |
|
176 |
-
|
177 |
def single_image_sample(
|
178 |
model,
|
179 |
diffusion,
|
@@ -188,8 +186,6 @@ def single_image_sample(
|
|
188 |
vae=None,
|
189 |
):
|
190 |
z = torch.randn(2, 4, 32, 32).to("cuda")
|
191 |
-
if vae is not None:
|
192 |
-
vae = vae.to("cuda")
|
193 |
|
194 |
# Prepare input for classifer-free guidance
|
195 |
rel = torch.cat([rel, rel], dim=0).to("cuda")
|
@@ -233,9 +229,8 @@ def single_image_sample(
|
|
233 |
images = samples
|
234 |
return ((images + 1)[0].permute(1, 2, 0) * 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
235 |
|
236 |
-
return samples
|
237 |
|
238 |
-
@spaces.GPU
|
239 |
def generate_image(model, image_processor, vae, clip_model, clip_vit, diffusion, img_cond, seed, cfg_scale, drags_list):
|
240 |
if img_cond is None:
|
241 |
gr.Warning("Please preprocess the image first.")
|
|
|
92 |
load=False,
|
93 |
)
|
94 |
model.load_state_dict(torch.load(model_checkpoint, map_location="cpu")["model"])
|
95 |
+
return model.to("cuda")
|
|
|
96 |
|
97 |
+
@spaces.GPU(duration=10)
|
98 |
def sam_segment(predictor, input_image, drags, foreground_points=None):
|
99 |
image = np.asarray(input_image)
|
|
|
100 |
predictor.set_image(image)
|
101 |
|
102 |
with torch.no_grad():
|
|
|
171 |
processed_img = image_pil.resize((256, 256), Image.LANCZOS)
|
172 |
return processed_img, new_drags
|
173 |
|
174 |
+
|
175 |
def single_image_sample(
|
176 |
model,
|
177 |
diffusion,
|
|
|
186 |
vae=None,
|
187 |
):
|
188 |
z = torch.randn(2, 4, 32, 32).to("cuda")
|
|
|
|
|
189 |
|
190 |
# Prepare input for classifer-free guidance
|
191 |
rel = torch.cat([rel, rel], dim=0).to("cuda")
|
|
|
229 |
images = samples
|
230 |
return ((images + 1)[0].permute(1, 2, 0) * 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
231 |
|
|
|
232 |
|
233 |
+
@spaces.GPU(duration=20)
|
234 |
def generate_image(model, image_processor, vae, clip_model, clip_vit, diffusion, img_cond, seed, cfg_scale, drags_list):
|
235 |
if img_cond is None:
|
236 |
gr.Warning("Please preprocess the image first.")
|