File size: 7,647 Bytes
12b7f59
 
 
 
 
7b6e4c3
 
12b7f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdeb833
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import gradio as gr
import os
from PIL import Image
import subprocess

os.system('pip install -e ./simple-knn')
os.system('pip install -e ./diff-gaussian-rasterization')

# check if there is a picture uploaded or selected
def check_img_input(control_image):
    if control_image is None:
        raise gr.Error("Please select or upload an input image")


def optimize_stage_1(image_block: Image.Image, preprocess_chk: bool, elevation_slider: float):
    if not os.path.exists('tmp_data'):
        os.makedirs('tmp_data')
    if preprocess_chk:
        # save image to a designated path
        image_block.save('tmp_data/tmp.png')

        # preprocess image
        subprocess.run([f'python process.py tmp_data/tmp.png'], shell=True)
    else:
        image_block.save('tmp_data/tmp_rgba.png')

    # stage 1
    subprocess.run([
                       f'python main.py --config configs/image.yaml input=tmp_data/tmp_rgba.png save_path=tmp mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'],
                   shell=True)

    return f'logs/tmp_mesh.glb'


def optimize_stage_2(elevation_slider: float):
    # stage 2
    subprocess.run([
                       f'python main2.py --config configs/image.yaml input=tmp_data/tmp_rgba.png save_path=tmp mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'],
                   shell=True)

    return f'logs/tmp.glb'


if __name__ == "__main__":
    _TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation'''

    _DESCRIPTION = '''
    <div>
    <a style="display:inline-block" href="https://dreamgaussian.github.io"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
    <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.16653"><img src="https://img.shields.io/badge/2306.16928-f9f7f7?logo="></a>
    <a style="display:inline-block; margin-left: .5em" href='https://github.com/dreamgaussian/dreamgaussian'><img src='https://img.shields.io/github/stars/dreamgaussian/dreamgaussian?style=social'/></a>
    </div>
    We present DreamGausssion, a 3D content generation framework that significantly improves the efficiency of 3D content creation. 
    '''
    _IMG_USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Generate 3D**."

    # load images in 'data' folder as examples
    example_folder = os.path.join(os.path.dirname(__file__), 'data')
    example_fns = os.listdir(example_folder)
    example_fns.sort()
    examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]

    # Compose demo layout & data flow
    with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown('# ' + _TITLE)
        gr.Markdown(_DESCRIPTION)

        # Image-to-3D
        with gr.Row(variant='panel'):
            with gr.Column(scale=5):
                image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None)

                elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle')
                gr.Markdown(
                    "default to 0 (horizontal), range from [-90, 90]. If you upload a look-down image, try a value like -30")

                preprocess_chk = gr.Checkbox(True,
                                             label='Preprocess image automatically (remove background and recenter object)')

                gr.Examples(
                    examples=examples_full,  # NOTE: elements must match inputs list!
                    inputs=[image_block],
                    outputs=[image_block],
                    cache_examples=False,
                    label='Examples (click one of the images below to start)',
                    examples_per_page=40
                )
                img_run_btn = gr.Button("Generate 3D")
                img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True)

            with gr.Column(scale=5):
                obj3d_stage1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Stage 1)")
                obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)")

            # if there is an input image, continue with inference
            # else display an error message
            img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_1,
                                                                                          inputs=[image_block,
                                                                                                  preprocess_chk,
                                                                                                  elevation_slider],
                                                                                          outputs=[
                                                                                              obj3d_stage1]).success(
                optimize_stage_2, inputs=[elevation_slider], outputs=[obj3d])

    demo.launch(enable_queue=True)