Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- .env +2 -0
- app.py +172 -0
- faiss_index/index.faiss +0 -0
- faiss_index/index.pkl +3 -0
- requirements.txt +10 -0
.env
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GOOGLE_API_KEY="AIzaSyB_RB4tirtCyfzcjiIlb4OXasS0kKU24lc"
|
2 |
+
|
app.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
|
3 |
+
from langchain.vectorstores import FAISS
|
4 |
+
from langchain.chains.question_answering import load_qa_chain
|
5 |
+
from langchain.prompts import PromptTemplate
|
6 |
+
import google.generativeai as genai
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
import os
|
9 |
+
from ai71 import AI71
|
10 |
+
import re
|
11 |
+
|
12 |
+
# Load environment variables
|
13 |
+
load_dotenv()
|
14 |
+
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
15 |
+
AI71_API_KEY = "api71-api-4cc4a01e-6d44-424a-b28f-38fe59855776"
|
16 |
+
|
17 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
18 |
+
|
19 |
+
# Define the function to load the vector store
|
20 |
+
def load_vector_store():
|
21 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
22 |
+
vector_store = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
23 |
+
return vector_store
|
24 |
+
|
25 |
+
# Define the function to get the conversational chain
|
26 |
+
def get_conversational_chain():
|
27 |
+
prompt_template = """
|
28 |
+
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
29 |
+
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
|
30 |
+
Context:\n {context}?\n
|
31 |
+
Question: \n{question}\n
|
32 |
+
|
33 |
+
Answer:
|
34 |
+
"""
|
35 |
+
|
36 |
+
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
37 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
38 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
39 |
+
|
40 |
+
return chain
|
41 |
+
|
42 |
+
# Define the function to handle user input
|
43 |
+
def handle_user_query(user_question):
|
44 |
+
vector_store = load_vector_store()
|
45 |
+
docs = vector_store.similarity_search(user_question)
|
46 |
+
|
47 |
+
chain = get_conversational_chain()
|
48 |
+
|
49 |
+
response = chain(
|
50 |
+
{"input_documents": docs, "question": user_question},
|
51 |
+
return_only_outputs=True
|
52 |
+
)
|
53 |
+
|
54 |
+
# initial response generator agent
|
55 |
+
initial_response = response.get("output_text", "No response generated.")
|
56 |
+
# detailed response generator agent
|
57 |
+
detailed_response = generate_detailed_response(initial_response, user_question)
|
58 |
+
# translator agent
|
59 |
+
urdu_response = generate_urdu_response(detailed_response)
|
60 |
+
|
61 |
+
return detailed_response, urdu_response
|
62 |
+
|
63 |
+
def clean_detailed_answer(response_text):
|
64 |
+
# Remove the "Reply:" prefix at the start
|
65 |
+
response_text = re.sub(r'^Reply:\s*', '', response_text, flags=re.IGNORECASE)
|
66 |
+
|
67 |
+
# Remove the "User:" suffix at the end (if applicable)
|
68 |
+
response_text = re.sub(r'\s*User:\s*$', '', response_text, flags=re.IGNORECASE)
|
69 |
+
|
70 |
+
return response_text
|
71 |
+
|
72 |
+
# Define the function to generate a detailed response using Falcon LLM with streaming
|
73 |
+
def generate_detailed_response(initial_response, question):
|
74 |
+
prompt = f"""
|
75 |
+
Provide a detailed and relevant explanation based on the initial response. Avoid any apologies or unnecessary prefaces.
|
76 |
+
|
77 |
+
Initial Response:
|
78 |
+
{initial_response}
|
79 |
+
|
80 |
+
Question:
|
81 |
+
{question}
|
82 |
+
|
83 |
+
Detailed Answer:
|
84 |
+
"""
|
85 |
+
|
86 |
+
detailed_answer = ""
|
87 |
+
for chunk in AI71(AI71_API_KEY).chat.completions.create(
|
88 |
+
model="tiiuae/falcon-180b-chat",
|
89 |
+
messages=[
|
90 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
91 |
+
{"role": "user", "content": prompt}
|
92 |
+
],
|
93 |
+
stream=True
|
94 |
+
):
|
95 |
+
if chunk.choices[0].delta.content:
|
96 |
+
detailed_answer += chunk.choices[0].delta.content
|
97 |
+
# Optionally, print each chunk for debugging
|
98 |
+
print(chunk.choices[0].delta.content, sep="", end="", flush=True)
|
99 |
+
cleaned_answer = clean_detailed_answer(detailed_answer)
|
100 |
+
return cleaned_answer
|
101 |
+
|
102 |
+
# Define the function to generate a response in Urdu using Falcon LLM
|
103 |
+
def generate_urdu_response(english_text):
|
104 |
+
prompt = f"""
|
105 |
+
Translate the following text into Urdu while preserving the meaning and details.
|
106 |
+
|
107 |
+
English Text:
|
108 |
+
{english_text}
|
109 |
+
|
110 |
+
Urdu Translation:
|
111 |
+
"""
|
112 |
+
|
113 |
+
urdu_response = ""
|
114 |
+
for chunk in AI71(AI71_API_KEY).chat.completions.create(
|
115 |
+
model="tiiuae/falcon-180b-chat",
|
116 |
+
messages=[
|
117 |
+
{"role": "system", "content": "You are a translation assistant."},
|
118 |
+
{"role": "user", "content": prompt}
|
119 |
+
],
|
120 |
+
stream=True
|
121 |
+
):
|
122 |
+
if chunk.choices[0].delta.content:
|
123 |
+
urdu_response += chunk.choices[0].delta.content
|
124 |
+
# Optionally, print each chunk for debugging
|
125 |
+
print(chunk.choices[0].delta.content, sep="", end="", flush=True)
|
126 |
+
|
127 |
+
return urdu_response
|
128 |
+
|
129 |
+
# Define the main function for Streamlit app
|
130 |
+
def main():
|
131 |
+
st.set_page_config("Chat with PDF")
|
132 |
+
st.header("ASK about economic studies")
|
133 |
+
|
134 |
+
# Initialize session state if it doesn't exist
|
135 |
+
if 'history' not in st.session_state:
|
136 |
+
st.session_state.history = []
|
137 |
+
|
138 |
+
# Load the vector store initially
|
139 |
+
if 'vector_store' not in st.session_state:
|
140 |
+
st.session_state.vector_store = load_vector_store()
|
141 |
+
|
142 |
+
# Text input for user query
|
143 |
+
user_question = st.text_input("Ask a Question")
|
144 |
+
|
145 |
+
if st.button("Generate Response"):
|
146 |
+
if user_question:
|
147 |
+
with st.spinner('Generating response, please wait...'):
|
148 |
+
english_response, urdu_response = handle_user_query(user_question)
|
149 |
+
st.markdown("**English Response:**")
|
150 |
+
st.write(english_response)
|
151 |
+
st.markdown("**Urdu Translation:**")
|
152 |
+
st.write(urdu_response)
|
153 |
+
# Add new query and response at the beginning of the history
|
154 |
+
st.session_state.history.insert(0, {
|
155 |
+
'user_question': user_question,
|
156 |
+
'english_response': english_response,
|
157 |
+
'urdu_response': urdu_response
|
158 |
+
})
|
159 |
+
|
160 |
+
# Display the history
|
161 |
+
if st.session_state.history:
|
162 |
+
st.subheader("***----------------------------Response History----------------------------***")
|
163 |
+
for entry in st.session_state.history:
|
164 |
+
st.markdown("**User's Question:**")
|
165 |
+
st.write(entry['user_question'])
|
166 |
+
st.markdown("**English Response:**")
|
167 |
+
st.write(entry['english_response'])
|
168 |
+
st.markdown("**Urdu Translation:**")
|
169 |
+
st.write(entry['urdu_response'])
|
170 |
+
|
171 |
+
if __name__ == "__main__":
|
172 |
+
main()
|
faiss_index/index.faiss
ADDED
Binary file (154 kB). View file
|
|
faiss_index/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:505dd53acb38e528b61efa72d989369cf9b782c53622e5e1443422e5f6be0b3a
|
3 |
+
size 501070
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ai71
|
2 |
+
streamlit
|
3 |
+
python-dotenv
|
4 |
+
langchain
|
5 |
+
PyPDF2
|
6 |
+
faiss-cpu
|
7 |
+
langchain_google_genai
|
8 |
+
langchain-core
|
9 |
+
langchain-community
|
10 |
+
google-generativeai
|