Upload 3 files
Browse files- app.py +129 -0
- requirements.txt +5 -0
- vanilla_cnn_se.pth +3 -0
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
# Define the VanillaCNN_SE class
|
10 |
+
class SEBlock(nn.Module):
|
11 |
+
def __init__(self, channels, reduction_ratio=16):
|
12 |
+
super(SEBlock, self).__init__()
|
13 |
+
self.global_avg_pool = nn.AdaptiveAvgPool2d(1)
|
14 |
+
self.fc1 = nn.Linear(channels, channels // reduction_ratio)
|
15 |
+
self.fc2 = nn.Linear(channels // reduction_ratio, channels)
|
16 |
+
self.sigmoid = nn.Sigmoid()
|
17 |
+
|
18 |
+
def forward(self, x):
|
19 |
+
batch_size, channels, _, _ = x.size()
|
20 |
+
y = self.global_avg_pool(x).view(batch_size, channels)
|
21 |
+
y = torch.relu(self.fc1(y))
|
22 |
+
y = self.sigmoid(self.fc2(y)).view(batch_size, channels, 1, 1)
|
23 |
+
return x * y
|
24 |
+
|
25 |
+
class VanillaCNN_SE(nn.Module):
|
26 |
+
def __init__(self, num_classes):
|
27 |
+
super(VanillaCNN_SE, self).__init__()
|
28 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
|
29 |
+
self.bn1 = nn.BatchNorm2d(64)
|
30 |
+
self.se1 = SEBlock(64)
|
31 |
+
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
|
32 |
+
self.bn2 = nn.BatchNorm2d(128)
|
33 |
+
self.se2 = SEBlock(128)
|
34 |
+
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
|
35 |
+
self.bn3 = nn.BatchNorm2d(256)
|
36 |
+
self.se3 = SEBlock(256)
|
37 |
+
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
|
38 |
+
self.bn4 = nn.BatchNorm2d(512)
|
39 |
+
self.se4 = SEBlock(512)
|
40 |
+
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
41 |
+
self.fc1 = nn.Linear(512 * 14 * 14, 1024)
|
42 |
+
self.fc2 = nn.Linear(1024, num_classes)
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
x = self.pool(torch.relu(self.bn1(self.conv1(x))))
|
46 |
+
x = self.se1(x)
|
47 |
+
x = self.pool(torch.relu(self.bn2(self.conv2(x))))
|
48 |
+
x = self.se2(x)
|
49 |
+
x = self.pool(torch.relu(self.bn3(self.conv3(x))))
|
50 |
+
x = self.se3(x)
|
51 |
+
x = self.pool(torch.relu(self.bn4(self.conv4(x))))
|
52 |
+
x = self.se4(x)
|
53 |
+
x = x.view(x.size(0), -1)
|
54 |
+
x = torch.relu(self.fc1(x))
|
55 |
+
x = self.fc2(x)
|
56 |
+
return x
|
57 |
+
|
58 |
+
# Load the model
|
59 |
+
@st.cache_resource
|
60 |
+
|
61 |
+
def load_model():
|
62 |
+
model = VanillaCNN_SE(num_classes=12) # Update num_classes as per your dataset
|
63 |
+
model.load_state_dict(torch.load("vanilla_cnn_se.pth", map_location=torch.device('cpu')))
|
64 |
+
model.eval()
|
65 |
+
return model
|
66 |
+
|
67 |
+
model = load_model()
|
68 |
+
|
69 |
+
# Define class names
|
70 |
+
class_names = [
|
71 |
+
"Maize", "Common wheat", "Common Chickweed", "Loose Silky-bent",
|
72 |
+
"Charlock", "Cleavers", "Sugar beet", "Fat Hen", "Scentless Mayweed",
|
73 |
+
"Small-flowered Cranesbill", "Shepherd’s Purse", "Black-grass"
|
74 |
+
]
|
75 |
+
|
76 |
+
# Define transformations
|
77 |
+
transform = transforms.Compose([
|
78 |
+
transforms.Resize((224, 224)),
|
79 |
+
transforms.ToTensor()
|
80 |
+
])
|
81 |
+
|
82 |
+
def mask_image(image):
|
83 |
+
# Convert PIL image to OpenCV format
|
84 |
+
image_np = np.array(image)
|
85 |
+
hsv_img = cv2.cvtColor(image_np, cv2.COLOR_RGB2HSV)
|
86 |
+
|
87 |
+
# Define green color range
|
88 |
+
lower_green = np.array([30, 40, 40])
|
89 |
+
upper_green = np.array([90, 255, 255])
|
90 |
+
|
91 |
+
# Create a mask for the green area
|
92 |
+
mask = cv2.inRange(hsv_img, lower_green, upper_green)
|
93 |
+
masked_img = cv2.bitwise_and(image_np, image_np, mask=mask)
|
94 |
+
|
95 |
+
# Convert back to PIL image
|
96 |
+
return Image.fromarray(masked_img)
|
97 |
+
|
98 |
+
def predict_class(image):
|
99 |
+
# Transform the image for the model
|
100 |
+
image_tensor = transform(image).unsqueeze(0)
|
101 |
+
|
102 |
+
# Predict the class
|
103 |
+
with torch.no_grad():
|
104 |
+
outputs = model(image_tensor)
|
105 |
+
_, predicted = torch.max(outputs, 1)
|
106 |
+
return class_names[predicted.item()]
|
107 |
+
|
108 |
+
# Streamlit UI
|
109 |
+
st.title("Plant Seedling Classification")
|
110 |
+
|
111 |
+
st.write("Upload an image to classify the plant seedling and view the masked image.")
|
112 |
+
|
113 |
+
# File uploader
|
114 |
+
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
115 |
+
|
116 |
+
if uploaded_file is not None:
|
117 |
+
# Load the image
|
118 |
+
image = Image.open(uploaded_file).convert("RGB")
|
119 |
+
|
120 |
+
# Mask the image
|
121 |
+
masked_image = mask_image(image)
|
122 |
+
|
123 |
+
# Predict the class
|
124 |
+
predicted_class = predict_class(image)
|
125 |
+
|
126 |
+
# Display results
|
127 |
+
st.image(image, caption="Original Image", use_column_width=True)
|
128 |
+
st.image(masked_image, caption="Masked Image", use_column_width=True)
|
129 |
+
st.write(f"### Predicted Class: {predicted_class}")
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
opencv-python
|
5 |
+
numpy
|
vanilla_cnn_se.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:298c1f3392f0c833e00405804ccd18f95e58e78bd3076d6eef0ac14dba447062
|
3 |
+
size 417508402
|