Spaces:
Sleeping
Sleeping
app
Browse files- .gitattributes +1 -0
- .gitignore +1 -0
- app.py +22 -5
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
.sesskey
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.sesskey
|
app.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
import json
|
|
|
2 |
import random
|
3 |
from collections import Counter
|
4 |
|
5 |
-
import
|
6 |
-
from datasets import load_dataset
|
7 |
from fasthtml.common import *
|
8 |
-
from fasthtml_hf import setup_hf_backup
|
9 |
from fastlite import database
|
|
|
10 |
|
11 |
-
|
12 |
|
13 |
fact_dataset = load_dataset("griffin/iclr2025_data_scores", split="train").to_list()
|
14 |
fact_dataset = [{"example_id": i, **example} for i, example in enumerate(fact_dataset)]
|
@@ -121,6 +121,22 @@ def render_example(example):
|
|
121 |
)
|
122 |
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
@rt("/")
|
125 |
async def get(question_type: str = None):
|
126 |
stats = get_stats()
|
@@ -207,6 +223,7 @@ async def post(decision: str, example: str):
|
|
207 |
"decision": decision,
|
208 |
}
|
209 |
)
|
|
|
210 |
|
211 |
# Add the evaluated example's ID to the set of evaluated IDs
|
212 |
evaluated_ids.add(example_dict["example_id"])
|
@@ -225,5 +242,5 @@ if __name__ == "__main__":
|
|
225 |
|
226 |
import uvicorn
|
227 |
|
228 |
-
setup_hf_backup(app)
|
229 |
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))
|
|
|
1 |
import json
|
2 |
+
import os
|
3 |
import random
|
4 |
from collections import Counter
|
5 |
|
6 |
+
from datasets import Dataset, load_dataset
|
|
|
7 |
from fasthtml.common import *
|
|
|
8 |
from fastlite import database
|
9 |
+
from huggingface_hub import create_repo, login
|
10 |
|
11 |
+
login(token=os.environ.get("HF_TOKEN"))
|
12 |
|
13 |
fact_dataset = load_dataset("griffin/iclr2025_data_scores", split="train").to_list()
|
14 |
fact_dataset = [{"example_id": i, **example} for i, example in enumerate(fact_dataset)]
|
|
|
121 |
)
|
122 |
|
123 |
|
124 |
+
def upload_to_hf():
|
125 |
+
create_repo(
|
126 |
+
repo_id="rbiswasfc/iclr-eval-examples",
|
127 |
+
token=os.environ.get("HF_TOKEN"),
|
128 |
+
private=True,
|
129 |
+
repo_type="dataset",
|
130 |
+
exist_ok=True,
|
131 |
+
)
|
132 |
+
|
133 |
+
examples = db.t.examples
|
134 |
+
annotations = examples()
|
135 |
+
|
136 |
+
hf_ds = Dataset.from_list(annotations)
|
137 |
+
hf_ds.push_to_hub("rbiswasfc/iclr-eval-examples", token=os.environ.get("HF_TOKEN"))
|
138 |
+
|
139 |
+
|
140 |
@rt("/")
|
141 |
async def get(question_type: str = None):
|
142 |
stats = get_stats()
|
|
|
223 |
"decision": decision,
|
224 |
}
|
225 |
)
|
226 |
+
upload_to_hf()
|
227 |
|
228 |
# Add the evaluated example's ID to the set of evaluated IDs
|
229 |
evaluated_ids.add(example_dict["example_id"])
|
|
|
242 |
|
243 |
import uvicorn
|
244 |
|
245 |
+
# setup_hf_backup(app)
|
246 |
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))
|