Spaces:
Sleeping
Sleeping
File size: 17,414 Bytes
67be06c 43bc104 67be06c c43dfe6 67be06c 43bc104 67be06c c43dfe6 67be06c c43dfe6 67be06c c43dfe6 67be06c c43dfe6 67be06c c43dfe6 67be06c c43dfe6 67be06c c43dfe6 67be06c 43bc104 67be06c 43bc104 67be06c 43bc104 67be06c 43bc104 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
import os
import re
import time
import dotenv
import fitz # PyMuPDF
import pandas as pd
import requests
import schedule
import srsly
from bs4 import BeautifulSoup
from datasets import Dataset, Image, load_dataset
from huggingface_hub import create_repo, login, whoami
from PIL import Image as PILImage
from retry import retry
from tqdm.auto import tqdm
dotenv.load_dotenv()
login(token=os.environ.get("HF_TOKEN"))
hf_user = whoami(os.environ.get("HF_TOKEN"))["name"]
HF_REPO_ID = f"{hf_user}/zotero-articles"
########################################################
### GET ZOTERO ITEMS
########################################################
@retry(tries=3, delay=8)
def _fetch_one_zotero_batch(url, headers, params):
"""
Fetch articles from Zotero API
"""
response = requests.get(url, headers=headers, params=params)
response.raise_for_status()
return response.json()
def get_zotero_items(debug=False):
"""
fetch items from zotero library
"""
GROUP_ID = os.getenv("GROUP_ID")
API_KEY = os.getenv("API_KEY")
BASE_URL = f"https://api.zotero.org/groups/{GROUP_ID}/items"
LIMIT = 100
headers = {"Zotero-API-Key": API_KEY, "Content-Type": "application/json"}
items = []
start = 0
i = 1
while True:
i += 1
params = {"limit": LIMIT, "start": start}
page_items = _fetch_one_zotero_batch(BASE_URL, headers, params)
if not page_items:
break
items.extend(page_items)
start += LIMIT
print(f"# items fetched {len(items)}")
if debug:
if len(items) > 200:
break
return items
########################################################
### EXTRACT ARXIV LINKS AND PDFs
########################################################
def get_arxiv_items(items):
visited = set()
arxiv_items = []
arxiv_pattern = re.compile(r"arxiv.org/abs/(\d+\.\d+)")
for item in items:
data = item.get("data", {})
attachments = item.get("links", {}).get("attachment", {})
arxiv_url = None
pdf_url = None
if "url" in data and "arxiv.org" in data["url"]:
arxiv_match = arxiv_pattern.search(data["url"])
if arxiv_match:
arxiv_url = data["url"]
if attachments:
pdf_url = attachments["href"]
if arxiv_url:
arxiv_id = arxiv_url.split("/")[-1]
if arxiv_id in visited:
continue
arxiv_items.append(
{
"arxiv_id": arxiv_id,
"arxiv_url": arxiv_url,
"pdf_url": pdf_url,
"added_by": item["meta"]["createdByUser"]["username"],
"date_added": data.get("dateAdded", ""),
}
)
visited.add(arxiv_id)
return arxiv_items
@retry(tries=3, delay=15, backoff=2)
def fetch_arxiv_html(arxiv_id):
url = f"https://ar5iv.labs.arxiv.org/html/{arxiv_id.split('v')[0]}"
response = requests.get(url)
return response.text if response.status_code == 200 else None
def fetch_arxiv_htmls(arxiv_items):
for item in tqdm(arxiv_items):
html = fetch_arxiv_html(item["arxiv_id"])
if html:
item["raw_html"] = html
else:
print(f"failed to fetch html for {item['arxiv_id']}")
item["raw_html"] = "Error"
return arxiv_items
########################################################
### PARSE CONTENT FROM ARXIV HTML #
########################################################
def parse_html_content(html):
"""
Parse content from arxiv html
"""
arxiv_id_match = re.search(r"\[(\d+\.\d+(v\d+)?)\]", html)
arxiv_id = arxiv_id_match.group(1) if arxiv_id_match else None
soup = BeautifulSoup(html, "html.parser")
result = []
# Extract paper title
try:
paper_title = soup.find("h1", class_="ltx_title ltx_title_document").get_text(strip=True)
except Exception:
paper_title = soup.find("title").get_text(strip=True)
paper_title = re.sub(r"^\[\d+\.\d+(v\d+)?\]\s*", "", paper_title)
for math in soup.find_all("math"):
math.decompose()
for cite in soup.find_all("cite"):
cite.decompose()
# Extract abstract
abstract = soup.find("div", class_="ltx_abstract")
if abstract:
result.append(
{
"content": " ".join(p.get_text(strip=True) for p in abstract.find_all("p")).replace(")", ") "),
"title": "Abstract",
"paper_title": paper_title,
"content_type": "abstract",
}
)
# Extract sections
sections = soup.find_all("section", class_="ltx_section")
for index, section in enumerate(sections):
section_title = section.find("h2", class_="ltx_title ltx_title_section")
section_title = section_title.get_text(strip=True) if section_title else f"Section {index + 1}"
section_content = section.get_text(strip=True).replace(")", ") ")
content_type = "body"
if index == 0:
content_type = "introduction"
elif index == len(sections) - 1:
content_type = "conclusion"
result.append(
{
"content": section_content,
"title": section_title,
"paper_title": paper_title,
"content_type": content_type,
}
)
for c in result:
c["arxiv_id"] = arxiv_id
return result
########################################################
### GET TEXTS FROM PDF & PARSE
########################################################
def get_pdf_text(arxiv_id):
url = "http://147.189.194.113:80/extract" # fix: currently down
try:
response = requests.get(url, params={"arxiv_id": arxiv_id})
response = response.json()
if "text" in response:
return response["text"]
return None
except Exception as e:
print(e)
return None
def get_content_type(section_type, section_count):
"""Determine the content type based on the section type and count"""
if section_type == "abstract":
return "abstract"
elif section_type == "introduction" or section_count == 1:
return "introduction"
elif section_type == "conclusion" or section_type == "references":
return section_type
else:
return "body"
def get_section_type(title):
"""Determine the section type based on the title"""
title_lower = title.lower()
if "abstract" in title_lower:
return "abstract"
elif "introduction" in title_lower:
return "introduction"
elif "conclusion" in title_lower:
return "conclusion"
elif "reference" in title_lower:
return "references"
else:
return "body"
def parse_markdown_content(md_content, arxiv_id):
"""
Parses markdown content to identify and extract sections based on headers.
"""
lines = md_content.split("\n")
parsed = []
current_section = None
content = []
paper_title = None
current_title = None
# identify sections based on headers
for line in lines:
if line.startswith("#"):
if paper_title is None:
paper_title = line.lstrip("#").strip()
continue
if content:
if current_title:
parsed.append(
{
"content": " ".join(content),
"title": current_title,
"paper_title": paper_title,
"content_type": get_content_type(current_section, len(parsed)),
"arxiv_id": arxiv_id,
}
)
content = []
current_title = line.lstrip("#").lstrip("#").lstrip()
if "bit" not in current_title:
current_title = (
current_title.lstrip("123456789")
.lstrip()
.lstrip(".")
.lstrip()
.lstrip("123456789")
.lstrip()
.lstrip(".")
.lstrip()
)
current_section = get_section_type(current_title)
else:
content.append(line)
# Add the last section
if content and current_title:
parsed.append(
{
"content": " ".join(content).replace(")", ") "),
"title": current_title,
"paper_title": paper_title,
"content_type": get_content_type(current_section, len(parsed)),
"arxiv_id": arxiv_id,
}
)
return parsed
########################################################
### Image Dataset
########################################################
def download_arxiv_pdf(arxiv_id):
arxiv_id = arxiv_id.split("v")[0]
url = f"https://arxiv.org/pdf/{arxiv_id}.pdf"
response = requests.get(url)
if response.status_code == 200:
return response.content
else:
raise Exception(f"Failed to download PDF. Status code: {response.status_code}")
def pdf_to_jpegs(pdf_content, output_folder):
# Create output folder if it doesn't exist
os.makedirs(output_folder, exist_ok=True)
# Open the PDF
doc = fitz.open(stream=pdf_content, filetype="pdf")
# Iterate through pages
for page_num in range(len(doc)):
page = doc.load_page(page_num)
# Convert page to image
pix = page.get_pixmap()
# Save image as JPEG
image_path = os.path.join(output_folder, f"page_{page_num + 1}.jpg")
pix.save(image_path)
# print(f"Saved {image_path}")
doc.close()
def save_arxiv_article_images(arxiv_id):
output_folder = os.path.join("data", "arxiv_images", arxiv_id)
try:
pdf_content = download_arxiv_pdf(arxiv_id)
pdf_to_jpegs(pdf_content, output_folder)
except Exception as e:
print(f"An error occurred: {str(e)}")
def create_hf_image_dataset(base_dir):
data = []
# Walk through the directory
for root, dirs, files in os.walk(base_dir):
for file in files:
if file.endswith(".jpg"):
# Extract arxiv_id from the path
arxiv_id = os.path.basename(root)
# Extract page number from the filename
match = re.search(r"page_(\d+)", file)
if match:
page_number = int(match.group(1))
else:
continue # Skip if page number can't be extracted
# Full path to the image
image_path = os.path.join(root, file)
# Open the image to get its size
with PILImage.open(image_path) as img:
width, height = img.size
# Add the data
data.append(
{"image": image_path, "arxiv_id": arxiv_id, "page_number": page_number, "width": width, "height": height}
)
# Create the dataset
dataset = Dataset.from_dict(
{
"image": [d["image"] for d in data],
"arxiv_id": [d["arxiv_id"] for d in data],
"page_number": [d["page_number"] for d in data],
"width": [d["width"] for d in data],
"height": [d["height"] for d in data],
}
)
# Cast the image column to Image
dataset = dataset.cast_column("image", Image())
return dataset
########################################################
### HF UPLOAD
########################################################
def upload_to_hf(abstract_df, contents_df, processed_arxiv_ids):
repo_id = HF_REPO_ID
create_repo(
repo_id=repo_id,
token=os.environ.get("HF_TOKEN"),
private=True,
repo_type="dataset",
exist_ok=True,
)
# upload image dataset
img_ds = create_hf_image_dataset("data/arxiv_images")
img_ds.push_to_hub(repo_id, "images", token=os.environ.get("HF_TOKEN"))
# push id_to_abstract
abstract_ds = Dataset.from_pandas(abstract_df)
abstract_ds.push_to_hub(repo_id, "abstracts", token=os.environ.get("HF_TOKEN"))
# push arxiv_items
arxiv_ds = Dataset.from_pandas(contents_df)
arxiv_ds.push_to_hub(repo_id, "articles", token=os.environ.get("HF_TOKEN"))
# push processed_arxiv_ids
processed_arxiv_ids = [{"arxiv_id": arxiv_id} for arxiv_id in processed_arxiv_ids]
processed_arxiv_ids_ds = Dataset.from_list(processed_arxiv_ids)
processed_arxiv_ids_ds.push_to_hub(repo_id, "processed_arxiv_ids", token=os.environ.get("HF_TOKEN"))
########################################################
### MAIN
########################################################
def main():
items = get_zotero_items(debug=True)
print(f"# of items fetched from zotero: {len(items)}")
arxiv_items = get_arxiv_items(items)
print(f"# of arxiv papers: {len(arxiv_items)}")
# get already processed arxiv ids from HF
try:
existing_arxiv_ids = load_dataset(HF_REPO_ID, "processed_arxiv_ids")["train"]["arxiv_id"]
except Exception as e:
print(e)
try:
existing_arxiv_ids = srsly.read_json("data/processed_arxiv_ids.json")
except Exception as e:
print(e)
existing_arxiv_ids = []
existing_arxiv_ids = set(existing_arxiv_ids)
print(f"# of existing arxiv ids: {len(existing_arxiv_ids)}")
# new arxiv items
arxiv_items = [item for item in arxiv_items if item["arxiv_id"] not in existing_arxiv_ids]
arxiv_items = fetch_arxiv_htmls(arxiv_items)
print(f"# of new arxiv items: {len(arxiv_items)}")
processed_arxiv_ids = set()
for item in arxiv_items:
# download images --
save_arxiv_article_images(item["arxiv_id"])
# parse html
try:
item["contents"] = parse_html_content(item["raw_html"])
processed_arxiv_ids.add(item["arxiv_id"])
except Exception as e:
print(f"Failed to parse html for {item['arxiv_id']}: {e}")
item["contents"] = []
if len(item["contents"]) == 0:
print("Extracting from pdf...")
md_content = get_pdf_text(item["arxiv_id"]) # fix this
if md_content:
item["contents"] = parse_markdown_content(md_content, item["arxiv_id"])
processed_arxiv_ids.add(item["arxiv_id"])
else:
item["contents"] = []
# save contents ---
processed_arxiv_ids = list(processed_arxiv_ids)
print(f"# of processed arxiv ids: {len(processed_arxiv_ids)}")
# save abstracts ---
id_to_abstract = {}
for item in arxiv_items:
for entry in item["contents"]:
if entry["content_type"] == "abstract":
id_to_abstract[item["arxiv_id"]] = entry["content"]
break
print(f"# of abstracts: {len(id_to_abstract)}")
abstract_df = pd.Series(id_to_abstract).reset_index().rename(columns={"index": "arxiv_id", 0: "abstract"})
print(abstract_df.head())
# add to existing dataset
try:
old_abstract_df = load_dataset(HF_REPO_ID, "abstracts")["train"].to_pandas()
except Exception as e:
print(e)
old_abstract_df = pd.DataFrame(columns=abstract_df.columns)
print(old_abstract_df.head())
abstract_df = pd.concat([old_abstract_df, abstract_df]).reset_index(drop=True)
abstract_df = abstract_df.drop_duplicates(subset=["arxiv_id"], keep="last").reset_index(drop=True)
# contents
contents_df = pd.DataFrame(arxiv_items)
print(contents_df.head())
try:
old_contents_df = load_dataset(HF_REPO_ID, "articles")["train"].to_pandas()
except Exception as e:
print(e)
old_contents_df = pd.DataFrame(columns=contents_df.columns)
if len(old_contents_df) > 0:
print(old_contents_df.sample().T)
contents_df = pd.concat([old_contents_df, contents_df]).reset_index(drop=True)
contents_df = contents_df.drop_duplicates(subset=["arxiv_id"], keep="last").reset_index(drop=True)
# upload to hf
processed_arxiv_ids = list(set(processed_arxiv_ids + list(processed_arxiv_ids)))
upload_to_hf(abstract_df, contents_df, processed_arxiv_ids)
# save as local copy
os.makedirs("data", exist_ok=True)
abstract_df.to_parquet("data/abstracts.parquet")
contents_df.to_parquet("data/contents.parquet")
srsly.write_json("data/processed_arxiv_ids.json", processed_arxiv_ids)
def schedule_periodic_task():
"""
Schedule the main task to run at the user-defined frequency
"""
main() # run once initially
frequency = "daily" # TODO: env
if frequency == "hourly":
print("Scheduling tasks to run every hour at the top of the hour")
schedule.every().hour.at(":00").do(main)
elif frequency == "daily":
start_time = "10:00"
print("Scheduling tasks to run every day at: {start_time} UTC+00")
schedule.every().day.at(start_time).do(main)
while True:
schedule.run_pending()
time.sleep(1)
if __name__ == "__main__":
schedule_periodic_task()
|