File size: 8,756 Bytes
970b02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10072b9
970b02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10072b9
970b02a
 
 
 
10072b9
970b02a
 
 
 
 
10072b9
 
970b02a
 
 
 
 
 
 
10072b9
970b02a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import subprocess

# Install flash attention
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)


import copy
import spaces
import time
import numpy as np
import torch

from threading import Thread
from typing import List, Dict, Union
import urllib
from PIL import Image
import io
import datasets

import gradio as gr
from transformers import AutoProcessor, TextIteratorStreamer
from transformers import Idefics2ForConditionalGeneration


DEVICE = torch.device("cuda")
MODELS = {
    "idefics2-8b-chatty": Idefics2ForConditionalGeneration.from_pretrained(
        "HuggingFaceM4/idefics2-8b-chatty",
        torch_dtype=torch.bfloat16,
        _attn_implementation="flash_attention_2",
    ).to(DEVICE),
}
PROCESSOR = AutoProcessor.from_pretrained(
    "HuggingFaceM4/idefics2-8b",
)

SYSTEM_PROMPT = [
    {
        "role": "system",
        "content": [
            {
                "type": "text",
                "text": "The following is a conversation between Idefics2, a highly knowledgeable and intelligent visual AI assistant created by Hugging Face, referred to as Assistant, and a human user called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant has the ability to perceive images and reason about them, but it cannot generate images. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts.",
            },
        ],
    },
    {
        "role": "assistant",
        "content": [
            {
                "type": "text",
                "text": "Hello, I'm Idefics2, Huggingface's latest multimodal assistant. How can I help you?",
            },
        ],
    }
]
examples_path = os.path.dirname(__file__)
EXAMPLES = [
    [
        {
            "text": "For 2024, the interest expense is twice what it was in 2014, and the long-term debt is 10% higher than its 2015 level. Can you calculate the combined total of the interest and long-term debt for 2024?",
            "files": [f"{examples_path}/example_images/mmmu_example_2.png"],
        }
    ],
]

BOT_AVATAR = "IDEFICS_logo.png"


# Chatbot utils
def turn_is_pure_media(turn):
    return turn[1] is None


def load_image_from_url(url):
    with urllib.request.urlopen(url) as response:
        image_data = response.read()
        image_stream = io.BytesIO(image_data)
        image = Image.open(image_stream)
        return image


def img_to_bytes(image_path):
    image = Image.open(image_path).convert(mode='RGB')
    buffer = io.BytesIO()
    image.save(buffer, format="JPEG")
    img_bytes = buffer.getvalue()
    image.close()
    return img_bytes


def format_user_prompt_with_im_history_and_system_conditioning(
    user_prompt, chat_history
) -> List[Dict[str, Union[List, str]]]:
    """
    Produces the resulting list that needs to go inside the processor.
    It handles the potential image(s), the history and the system conditionning.
    """
    resulting_messages = copy.deepcopy(SYSTEM_PROMPT)
    resulting_images = []
    for resulting_message in resulting_messages:
        if resulting_message["role"] == "user":
            for content in resulting_message["content"]:
                if content["type"] == "image":
                    resulting_images.append(load_image_from_url(content["image"]))

    # Format history
    for turn in chat_history:
        if not resulting_messages or (
            resulting_messages and resulting_messages[-1]["role"] != "user"
        ):
            resulting_messages.append(
                {
                    "role": "user",
                    "content": [],
                }
            )

        if turn_is_pure_media(turn):
            media = turn[0][0]
            resulting_messages[-1]["content"].append({"type": "image"})
            resulting_images.append(Image.open(media))
        else:
            user_utterance, assistant_utterance = turn
            resulting_messages[-1]["content"].append(
                {"type": "text", "text": user_utterance.strip()}
            )
            resulting_messages.append(
                {
                    "role": "assistant",
                    "content": [{"type": "text", "text": user_utterance.strip()}],
                }
            )

    # Format current input
    if not user_prompt["files"]:
        resulting_messages.append(
            {
                "role": "user",
                "content": [{"type": "text", "text": user_prompt["text"]}],
            }
        )
    else:
        # Choosing to put the image first (i.e. before the text), but this is an arbiratrary choice.
        resulting_messages.append(
            {
                "role": "user",
                "content": [{"type": "image"}] * len(user_prompt["files"])
                + [{"type": "text", "text": user_prompt["text"]}],
            }
        )
        resulting_images.extend([Image.open(path) for path in user_prompt["files"]])

    return resulting_messages, resulting_images


def extract_images_from_msg_list(msg_list):
    all_images = []
    for msg in msg_list:
        for c_ in msg["content"]:
            if isinstance(c_, Image.Image):
                all_images.append(c_)
    return all_images


@spaces.GPU(duration=180)
def model_inference(
    user_prompt,
    chat_history,
    model_selector,
    temperature,
    top_p,
):
    if not user_prompt["files"]:
        gr.Error("Please give me a picture of someone to rate!")

    streamer = TextIteratorStreamer(
        PROCESSOR.tokenizer,
        skip_prompt=True,
        timeout=5.0,
    )

    # Common parameters to all decoding strategies
    # This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
    generation_args = {
        "max_new_tokens": 512,
        "repetition_penalty": 1.1,
        "streamer": streamer,
    }

    generation_args["temperature"] = temperature
    generation_args["do_sample"] = True
    generation_args["top_p"] = top_p

    # Creating model inputs
    (
        resulting_text,
        resulting_images,
    ) = format_user_prompt_with_im_history_and_system_conditioning(
        user_prompt=user_prompt,
        chat_history=chat_history,
    )
    prompt = PROCESSOR.apply_chat_template(resulting_text, add_generation_prompt=True)
    inputs = PROCESSOR(
        text=prompt,
        images=resulting_images if resulting_images else None,
        return_tensors="pt",
    )
    inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
    generation_args.update(inputs)

    # # The regular non streaming generation mode
    # _ = generation_args.pop("streamer")
    # generated_ids = MODELS[model_selector].generate(**generation_args)
    # generated_text = PROCESSOR.batch_decode(generated_ids[:, generation_args["input_ids"].size(-1): ], skip_special_tokens=True)[0]
    # return generated_text

    # The streaming generation mode
    thread = Thread(
        target=MODELS[model_selector].generate,
        kwargs=generation_args,
    )
    thread.start()

    print("Start generating")
    acc_text = ""
    for text_token in streamer:
        time.sleep(0.04)
        acc_text += text_token
        if acc_text.endswith("<end_of_utterance>"):
            acc_text = acc_text[:-18]
        yield acc_text
    print("Success - generated the following text:", acc_text)
    print("-----")


chatbot = gr.Chatbot(
    label="Idefics2-Chatty",
    avatar_images=[None, BOT_AVATAR],
    height=450,
)

with gr.Blocks(
    fill_height=True,
    css=""".gradio-container .avatar-container {height: 40px width: 40px !important;} #duplicate-button {margin: auto; color: white; background: #f1a139; border-radius: 100vh; margin-top: 2px; margin-bottom: 2px;}""",
) as demo:

    gr.Markdown("# 🐶 Hugging Face Idefics2 8B Chatty")
    gr.Markdown("In this demo you'll be able to chat with [Idefics2-8B-chatty](https://huggingface.co/HuggingFaceM4/idefics2-8b-chatty), a variant of [Idefics2-8B](https://huggingface.co/HuggingFaceM4/idefics2-8b-chatty) further fine-tuned on chat datasets.")
    gr.Markdown("If you want to learn more about Idefics2 and its variants, you can check our [blog post](https://huggingface.co/blog/idefics2).")
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    # model selector should be set to `visbile=False` ultimately


    gr.ChatInterface(
        fn=model_inference,
        chatbot=chatbot,
        examples=EXAMPLES,
        multimodal=True,
        cache_examples=False,
    )

demo.launch()