File size: 6,096 Bytes
3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 1e17711 3d50a9a 1e17711 3d50a9a 55ca09f 1e17711 55ca09f b925a10 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 1e17711 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 1e17711 55ca09f 3d50a9a 55ca09f 3d50a9a 1e17711 3d50a9a 55ca09f 3d50a9a 55ca09f 1e17711 3d50a9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import gradio as gr
import numpy as np
import random
import spaces
from models import SwittiPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "yresearch/Switti"
pipe = SwittiPipeline.from_pretrained(model_repo_id, device=device)
MAX_SEED = np.iinfo(np.int32).max
@spaces.GPU(duration=65)
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
guidance_scale=4.0,
top_k=400,
top_p=0.95,
more_smooth=True,
smooth_start_si=2,
turn_off_cfg_start_si=10,
more_diverse=True,
last_scale_temp=None,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
turn_on_cfg_start_si = 2 if more_diverse else 0
image = pipe(
prompt=prompt,
null_prompt=negative_prompt,
cfg=guidance_scale,
top_p=top_p,
top_k=top_k,
more_smooth=more_smooth,
smooth_start_si=smooth_start_si,
turn_off_cfg_start_si=turn_off_cfg_start_si,
turn_on_cfg_start_si=turn_on_cfg_start_si,
seed=seed,
last_scale_temp=last_scale_temp,
)[0]
return image, seed
examples = [
"Cute winter dragon baby, kawaii, Pixar, ultra detailed, glacial background, extremely realistic.",
"Cat as a wizard",
("An ancient ruined archway on the moon, fantasy, ruins of an alien civilization, "
"concept art, blue sky, reflectionin water pool, large white planet rising behind it"),
("A lizard that looks very much like a man, with developed muscles, leather armor "
"with metal elements, in the hands of a large trident decorated with ancient runes,"
" against the background of a small lake, everything is well drawn in the style of fantasy"),
("The Mandalorian by masamune shirow, fighting stance, in the snow, "
"cinematic lighting, intricate detail, character design"),
"Phoenix woman brown skin asian eyes silver scales, full body, high detail",
("Portrait of an alien family from the 1970’s, futuristic clothes, "
"absurd alien helmet, straight line, surreal, strange, absurd, photorealistic, "
"Hasselblad, Kodak, portra 800, 35mm lens, F 2.8, photo studio."),
("32 – bit pixelated future Hiphop producer in glowing power street ware, "
"noriyoshi ohrai, in the style of minecraft tomer hanuka."),
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # [Switti](https://yandex-research.github.io/switti)")
gr.Markdown("[Learn more](https://yandex-research.github.io/switti) about Switti.")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.,
step=0.5,
value=6.,
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
with gr.Row():
top_k = gr.Slider(
label="Sampling top k",
minimum=10,
maximum=1000,
step=10,
value=400,
)
top_p = gr.Slider(
label="Sampling top p",
minimum=0.0,
maximum=1.,
step=0.01,
value=0.95,
)
with gr.Row():
more_smooth = gr.Checkbox(label="Smoothing with Gumbel softmax sampling", value=True)
smooth_start_si = gr.Slider(
label="Smoothing starting scale",
minimum=0,
maximum=10,
step=1,
value=2,
)
turn_off_cfg_start_si = gr.Slider(
label="Disable CFG starting scale",
minimum=0,
maximum=10,
step=1,
value=8,
)
with gr.Row():
more_diverse = gr.Checkbox(label="More diverse", value=True)
apply_late_temperature = gr.Checkbox(label="Temperature after disabling CFG", value=False)
last_scale_temp = gr.Slider(
label="Late temperature value",
minimum=0.1,
maximum=10,
step=0.1,
value=1,
)
if not apply_late_temperature:
last_scale_temp = None
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True)# cache_mode="lazy")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
top_k,
top_p,
more_smooth,
smooth_start_si,
turn_off_cfg_start_si,
more_diverse,
last_scale_temp,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|