|
import math |
|
from typing import List, Optional, Sequence, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
from torch import distributed as tdist |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
|
|
__all__ = ["VectorQuantizer2"] |
|
|
|
|
|
class VectorQuantizer2(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
vocab_size, |
|
Cvae, |
|
using_znorm, |
|
beta: float = 0.25, |
|
default_qresi_counts=0, |
|
v_patch_nums=None, |
|
quant_resi=0.5, |
|
share_quant_resi=4, |
|
): |
|
super().__init__() |
|
self.vocab_size: int = vocab_size |
|
self.Cvae: int = Cvae |
|
self.using_znorm: bool = using_znorm |
|
self.v_patch_nums: Tuple[int] = v_patch_nums |
|
|
|
self.quant_resi_ratio = quant_resi |
|
if share_quant_resi == 0: |
|
self.quant_resi = PhiNonShared( |
|
[ |
|
(Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity()) |
|
for _ in range(default_qresi_counts or len(self.v_patch_nums)) |
|
] |
|
) |
|
elif share_quant_resi == 1: |
|
self.quant_resi = PhiShared( |
|
Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity() |
|
) |
|
else: |
|
self.quant_resi = PhiPartiallyShared( |
|
nn.ModuleList([( |
|
Phi(Cvae, quant_resi) |
|
if abs(quant_resi) > 1e-6 |
|
else nn.Identity() |
|
) for _ in range(share_quant_resi)]) |
|
) |
|
|
|
self.register_buffer( |
|
"ema_vocab_hit_SV", |
|
torch.full((len(self.v_patch_nums), self.vocab_size), fill_value=0.0), |
|
) |
|
self.record_hit = 0 |
|
|
|
self.beta: float = beta |
|
self.embedding = nn.Embedding(self.vocab_size, self.Cvae) |
|
|
|
def eini(self, eini): |
|
if eini > 0: |
|
nn.init.trunc_normal_(self.embedding.weight.data, std=eini) |
|
elif eini < 0: |
|
self.embedding.weight.data.uniform_( |
|
-abs(eini) / self.vocab_size, abs(eini) / self.vocab_size |
|
) |
|
|
|
def extra_repr(self) -> str: |
|
return f"{self.v_patch_nums}, znorm={self.using_znorm}, beta={self.beta} | S={len(self.v_patch_nums)}, quant_resi={self.quant_resi_ratio}" |
|
|
|
|
|
def forward( |
|
self, f_BChw: torch.Tensor, ret_usages=False |
|
) -> Tuple[torch.Tensor, List[float], torch.Tensor]: |
|
dtype = f_BChw.dtype |
|
if dtype != torch.float32: |
|
f_BChw = f_BChw.float() |
|
B, C, H, W = f_BChw.shape |
|
f_no_grad = f_BChw.detach() |
|
|
|
f_rest = f_no_grad.clone() |
|
f_hat = torch.zeros_like(f_rest) |
|
|
|
with torch.cuda.amp.autocast(enabled=False): |
|
mean_vq_loss: torch.Tensor = 0.0 |
|
vocab_hit_V = torch.zeros( |
|
self.vocab_size, dtype=torch.float, device=f_BChw.device |
|
) |
|
SN = len(self.v_patch_nums) |
|
for si, pn in enumerate(self.v_patch_nums): |
|
|
|
if self.using_znorm: |
|
rest_NC = ( |
|
F.interpolate(f_rest, size=(pn, pn), mode="area") |
|
.permute(0, 2, 3, 1) |
|
.reshape(-1, C) |
|
if (si != SN - 1) |
|
else f_rest.permute(0, 2, 3, 1).reshape(-1, C) |
|
) |
|
rest_NC = F.normalize(rest_NC, dim=-1) |
|
idx_N = torch.argmax( |
|
rest_NC @ F.normalize(self.embedding.weight.data.T, dim=0), |
|
dim=1, |
|
) |
|
else: |
|
rest_NC = ( |
|
F.interpolate(f_rest, size=(pn, pn), mode="area") |
|
.permute(0, 2, 3, 1) |
|
.reshape(-1, C) |
|
if (si != SN - 1) |
|
else f_rest.permute(0, 2, 3, 1).reshape(-1, C) |
|
) |
|
d_no_grad = torch.sum( |
|
rest_NC.square(), dim=1, keepdim=True |
|
) + torch.sum( |
|
self.embedding.weight.data.square(), dim=1, keepdim=False |
|
) |
|
d_no_grad.addmm_( |
|
rest_NC, self.embedding.weight.data.T, alpha=-2, beta=1 |
|
) |
|
idx_N = torch.argmin(d_no_grad, dim=1) |
|
|
|
hit_V = idx_N.bincount(minlength=self.vocab_size).float() |
|
if self.training: |
|
|
|
handler = tdist.all_reduce(hit_V, async_op=True) |
|
|
|
|
|
idx_Bhw = idx_N.view(B, pn, pn) |
|
h_BChw = ( |
|
F.interpolate( |
|
self.embedding(idx_Bhw).permute(0, 3, 1, 2), |
|
size=(H, W), |
|
mode="bicubic", |
|
).contiguous() |
|
if (si != SN - 1) |
|
else self.embedding(idx_Bhw).permute(0, 3, 1, 2).contiguous() |
|
) |
|
h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) |
|
f_hat = f_hat + h_BChw |
|
f_rest -= h_BChw |
|
|
|
if self.training: |
|
handler.wait() |
|
if self.record_hit == 0: |
|
self.ema_vocab_hit_SV[si].copy_(hit_V) |
|
elif self.record_hit < 100: |
|
self.ema_vocab_hit_SV[si].mul_(0.9).add_(hit_V.mul(0.1)) |
|
else: |
|
self.ema_vocab_hit_SV[si].mul_(0.99).add_(hit_V.mul(0.01)) |
|
self.record_hit += 1 |
|
vocab_hit_V.add_(hit_V) |
|
mean_vq_loss += F.mse_loss(f_hat.data, f_BChw).mul_(self.beta) + F.mse_loss(f_hat, f_no_grad) |
|
|
|
mean_vq_loss *= 1.0 / SN |
|
f_hat = (f_hat.data - f_no_grad).add_(f_BChw) |
|
|
|
margin = ( |
|
tdist.get_world_size() |
|
* (f_BChw.numel() / f_BChw.shape[1]) |
|
/ self.vocab_size |
|
* 0.08 |
|
) |
|
|
|
if ret_usages: |
|
usages = [ |
|
(self.ema_vocab_hit_SV[si] >= margin).float().mean().item() * 100 |
|
for si, pn in enumerate(self.v_patch_nums) |
|
] |
|
else: |
|
usages = None |
|
return f_hat, usages, mean_vq_loss |
|
|
|
|
|
|
|
def embed_to_fhat( |
|
self, ms_h_BChw: List[torch.Tensor], all_to_max_scale=True, last_one=False |
|
) -> Union[List[torch.Tensor], torch.Tensor]: |
|
ls_f_hat_BChw = [] |
|
B = ms_h_BChw[0].shape[0] |
|
H = W = self.v_patch_nums[-1] |
|
SN = len(self.v_patch_nums) |
|
if all_to_max_scale: |
|
f_hat = ms_h_BChw[0].new_zeros(B, self.Cvae, H, W, dtype=torch.float32) |
|
for si, pn in enumerate(self.v_patch_nums): |
|
h_BChw = ms_h_BChw[si] |
|
if si < len(self.v_patch_nums) - 1: |
|
h_BChw = F.interpolate(h_BChw, size=(H, W), mode="bicubic") |
|
h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) |
|
f_hat.add_(h_BChw) |
|
if last_one: |
|
ls_f_hat_BChw = f_hat |
|
else: |
|
ls_f_hat_BChw.append(f_hat.clone()) |
|
else: |
|
|
|
|
|
f_hat = ms_h_BChw[0].new_zeros( |
|
B, |
|
self.Cvae, |
|
self.v_patch_nums[0], |
|
self.v_patch_nums[0], |
|
dtype=torch.float32, |
|
) |
|
for si, pn in enumerate(self.v_patch_nums): |
|
f_hat = F.interpolate(f_hat, size=(pn, pn), mode="bicubic") |
|
h_BChw = self.quant_resi[si / (SN - 1)](ms_h_BChw[si]) |
|
f_hat.add_(h_BChw) |
|
if last_one: |
|
ls_f_hat_BChw = f_hat |
|
else: |
|
ls_f_hat_BChw.append(f_hat) |
|
|
|
return ls_f_hat_BChw |
|
|
|
def f_to_idxBl_or_fhat( |
|
self, |
|
f_BChw: torch.Tensor, |
|
to_fhat: bool, |
|
v_patch_nums: Optional[Sequence[Union[int, Tuple[int, int]]]] = None, |
|
noise_std: Optional[float] = None, |
|
) -> List[Union[torch.Tensor, torch.LongTensor]]: |
|
B, C, H, W = f_BChw.shape |
|
f_no_grad = f_BChw.detach() |
|
f_rest = f_no_grad.clone() |
|
f_hat = torch.zeros_like(f_rest) |
|
|
|
f_hat_or_idx_Bl: List[torch.Tensor] = [] |
|
|
|
patch_hws = [ |
|
(pn, pn) if isinstance(pn, int) else (pn[0], pn[1]) |
|
for pn in (v_patch_nums or self.v_patch_nums) |
|
] |
|
assert ( |
|
patch_hws[-1][0] == H and patch_hws[-1][1] == W |
|
), f"{patch_hws[-1]=} != ({H=}, {W=})" |
|
|
|
SN = len(patch_hws) |
|
for si, (ph, pw) in enumerate(patch_hws): |
|
|
|
z_NC = ( |
|
F.interpolate(f_rest, size=(ph, pw), mode="area") |
|
.permute(0, 2, 3, 1) |
|
.reshape(-1, C) |
|
if (si != SN - 1) |
|
else f_rest.permute(0, 2, 3, 1).reshape(-1, C) |
|
) |
|
if noise_std is not None: |
|
z_NC = math.sqrt(1 - noise_std ** 2) * z_NC + torch.randn_like(z_NC) * noise_std |
|
|
|
if self.using_znorm: |
|
z_NC = F.normalize(z_NC, dim=-1) |
|
idx_N = torch.argmax( |
|
z_NC @ F.normalize(self.embedding.weight.data.T, dim=0), dim=1 |
|
) |
|
else: |
|
d_no_grad = torch.sum(z_NC.square(), dim=1, keepdim=True) + torch.sum( |
|
self.embedding.weight.data.square(), dim=1, keepdim=False |
|
) |
|
d_no_grad.addmm_( |
|
z_NC, self.embedding.weight.data.T, alpha=-2, beta=1 |
|
) |
|
idx_N = torch.argmin(d_no_grad, dim=1) |
|
|
|
idx_Bhw = idx_N.view(B, ph, pw) |
|
h_BChw = ( |
|
F.interpolate( |
|
self.embedding(idx_Bhw).permute(0, 3, 1, 2), |
|
size=(H, W), |
|
mode="bicubic", |
|
).contiguous() |
|
if (si != SN - 1) |
|
else self.embedding(idx_Bhw).permute(0, 3, 1, 2).contiguous() |
|
) |
|
h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) |
|
f_hat.add_(h_BChw) |
|
f_rest.sub_(h_BChw) |
|
f_hat_or_idx_Bl.append( |
|
f_hat.clone() if to_fhat else idx_N.reshape(B, ph * pw) |
|
) |
|
|
|
return f_hat_or_idx_Bl |
|
|
|
|
|
def idxBl_to_switti_input(self, gt_ms_idx_Bl: List[torch.Tensor]) -> torch.Tensor: |
|
next_scales = [] |
|
B = gt_ms_idx_Bl[0].shape[0] |
|
C = self.Cvae |
|
H = W = self.v_patch_nums[-1] |
|
SN = len(self.v_patch_nums) |
|
|
|
f_hat = gt_ms_idx_Bl[0].new_zeros(B, C, H, W, dtype=torch.float32) |
|
pn_next: int = self.v_patch_nums[0] |
|
for si in range(SN - 1): |
|
h_BChw = F.interpolate( |
|
self.embedding(gt_ms_idx_Bl[si]) |
|
.transpose_(1, 2) |
|
.view(B, C, pn_next, pn_next), |
|
size=(H, W), |
|
mode="bicubic", |
|
) |
|
f_hat.add_(self.quant_resi[si / (SN - 1)](h_BChw)) |
|
pn_next = self.v_patch_nums[si + 1] |
|
next_scales.append( |
|
F.interpolate(f_hat, size=(pn_next, pn_next), mode="area") |
|
.view(B, C, -1) |
|
.transpose(1, 2) |
|
) |
|
|
|
return torch.cat(next_scales, dim=1) if len(next_scales) else None |
|
|
|
|
|
def get_next_autoregressive_input( |
|
self, si: int, SN: int, f_hat: torch.Tensor, h_BChw: torch.Tensor |
|
) -> Tuple[Optional[torch.Tensor], torch.Tensor]: |
|
HW = self.v_patch_nums[-1] |
|
if si != SN - 1: |
|
h = self.quant_resi[si / (SN - 1)]( |
|
F.interpolate(h_BChw, size=(HW, HW), mode="bicubic") |
|
) |
|
f_hat.add_(h) |
|
return f_hat, F.interpolate( |
|
f_hat, |
|
size=(self.v_patch_nums[si + 1], self.v_patch_nums[si + 1]), |
|
mode="area", |
|
) |
|
else: |
|
h = self.quant_resi[si / (SN - 1)](h_BChw) |
|
f_hat.add_(h) |
|
return f_hat, f_hat |
|
|
|
|
|
class Phi(nn.Conv2d): |
|
def __init__(self, embed_dim, quant_resi): |
|
ks = 3 |
|
super().__init__( |
|
in_channels=embed_dim, |
|
out_channels=embed_dim, |
|
kernel_size=ks, |
|
stride=1, |
|
padding=ks // 2, |
|
) |
|
self.resi_ratio = abs(quant_resi) |
|
|
|
def forward(self, h_BChw): |
|
return h_BChw.mul(1 - self.resi_ratio) + super().forward(h_BChw).mul_( |
|
self.resi_ratio |
|
) |
|
|
|
|
|
class PhiShared(nn.Module): |
|
def __init__(self, qresi: Phi): |
|
super().__init__() |
|
self.qresi: Phi = qresi |
|
|
|
def __getitem__(self, _) -> Phi: |
|
return self.qresi |
|
|
|
|
|
class PhiPartiallyShared(nn.Module): |
|
def __init__(self, qresi_ls: nn.ModuleList): |
|
super().__init__() |
|
self.qresi_ls = qresi_ls |
|
K = len(qresi_ls) |
|
self.ticks = ( |
|
np.linspace(1 / 3 / K, 1 - 1 / 3 / K, K) |
|
if K == 4 |
|
else np.linspace(1 / 2 / K, 1 - 1 / 2 / K, K) |
|
) |
|
|
|
def __getitem__(self, at_from_0_to_1: float) -> Phi: |
|
return self.qresi_ls[np.argmin(np.abs(self.ticks - at_from_0_to_1)).item()] |
|
|
|
def extra_repr(self) -> str: |
|
return f"ticks={self.ticks}" |
|
|
|
|
|
class PhiNonShared(nn.ModuleList): |
|
def __init__(self, qresi: List): |
|
super().__init__(qresi) |
|
|
|
K = len(qresi) |
|
self.ticks = ( |
|
np.linspace(1 / 3 / K, 1 - 1 / 3 / K, K) |
|
if K == 4 |
|
else np.linspace(1 / 2 / K, 1 - 1 / 2 / K, K) |
|
) |
|
|
|
def __getitem__(self, at_from_0_to_1: float) -> Phi: |
|
return super().__getitem__( |
|
np.argmin(np.abs(self.ticks - at_from_0_to_1)).item() |
|
) |
|
|
|
def extra_repr(self) -> str: |
|
return f"ticks={self.ticks}" |