|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
__all__ = [ "Encoder", "Decoder"] |
|
|
|
|
|
""" |
|
References: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/diffusionmodules/model.py |
|
""" |
|
|
|
|
|
|
|
def nonlinearity(x): |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
def Normalize(in_channels, num_groups=32): |
|
return torch.nn.GroupNorm( |
|
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
|
|
|
|
class Upsample2x(nn.Module): |
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(F.interpolate(x, scale_factor=2, mode="nearest")) |
|
|
|
|
|
class Downsample2x(nn.Module): |
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=2, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(F.pad(x, pad=(0, 1, 0, 1), mode="constant", value=0)) |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__( |
|
self, *, in_channels, out_channels=None, dropout |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
|
|
self.norm1 = Normalize(in_channels) |
|
self.conv1 = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.norm2 = Normalize(out_channels) |
|
self.dropout = torch.nn.Dropout(dropout) if dropout > 1e-6 else nn.Identity() |
|
self.conv2 = torch.nn.Conv2d( |
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
if self.in_channels != self.out_channels: |
|
self.nin_shortcut = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
else: |
|
self.nin_shortcut = nn.Identity() |
|
|
|
def forward(self, x): |
|
h = self.conv1(F.silu(self.norm1(x), inplace=True)) |
|
h = self.conv2(self.dropout(F.silu(self.norm2(h), inplace=True))) |
|
return self.nin_shortcut(x) + h |
|
|
|
|
|
class AttnBlock(nn.Module): |
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.C = in_channels |
|
|
|
self.norm = Normalize(in_channels) |
|
self.qkv = torch.nn.Conv2d( |
|
in_channels, 3 * in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.w_ratio = int(in_channels) ** (-0.5) |
|
self.proj_out = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
qkv = self.qkv(self.norm(x)) |
|
B, _, H, W = qkv.shape |
|
C = self.C |
|
q, k, v = qkv.reshape(B, 3, C, H, W).unbind(1) |
|
|
|
|
|
q = q.view(B, C, H * W).contiguous() |
|
q = q.permute(0, 2, 1).contiguous() |
|
k = k.view(B, C, H * W).contiguous() |
|
w = torch.bmm(q, k).mul_(self.w_ratio) |
|
|
|
w = F.softmax(w, dim=2) |
|
|
|
|
|
v = v.view(B, C, H * W).contiguous() |
|
w = w.permute(0, 2, 1).contiguous() |
|
h = torch.bmm(v, w) |
|
h = h.view(B, C, H, W).contiguous() |
|
|
|
return x + self.proj_out(h) |
|
|
|
|
|
def make_attn(in_channels, using_sa=True): |
|
return AttnBlock(in_channels) if using_sa else nn.Identity() |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
ch=128, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks=2, |
|
dropout=0.0, |
|
in_channels=3, |
|
z_channels, |
|
double_z=False, |
|
using_sa=True, |
|
using_mid_sa=True, |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.num_resolutions = len(ch_mult) |
|
self.downsample_ratio = 2 ** (self.num_resolutions - 1) |
|
self.num_res_blocks = num_res_blocks |
|
self.in_channels = in_channels |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
in_channels, self.ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, out_channels=block_out, dropout=dropout |
|
) |
|
) |
|
block_in = block_out |
|
if i_level == self.num_resolutions - 1 and using_sa: |
|
attn.append(make_attn(block_in, using_sa=True)) |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions - 1: |
|
down.downsample = Downsample2x(block_in) |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, out_channels=block_in, dropout=dropout |
|
) |
|
self.mid.attn_1 = make_attn(block_in, using_sa=using_mid_sa) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, out_channels=block_in, dropout=dropout |
|
) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, |
|
(2 * z_channels if double_z else z_channels), |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
def forward(self, x): |
|
|
|
h = self.conv_in(x) |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](h) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
if i_level != self.num_resolutions - 1: |
|
h = self.down[i_level].downsample(h) |
|
|
|
|
|
h = self.mid.block_2(self.mid.attn_1(self.mid.block_1(h))) |
|
|
|
|
|
h = self.conv_out(F.silu(self.norm_out(h), inplace=True)) |
|
return h |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
ch=128, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks=2, |
|
dropout=0.0, |
|
in_channels=3, |
|
z_channels, |
|
using_sa=True, |
|
using_mid_sa=True, |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.in_channels = in_channels |
|
|
|
|
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
block_in = ch * ch_mult[self.num_resolutions - 1] |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
z_channels, block_in, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, out_channels=block_in, dropout=dropout |
|
) |
|
self.mid.attn_1 = make_attn(block_in, using_sa=using_mid_sa) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, out_channels=block_in, dropout=dropout |
|
) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks + 1): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, out_channels=block_out, dropout=dropout |
|
) |
|
) |
|
block_in = block_out |
|
if i_level == self.num_resolutions - 1 and using_sa: |
|
attn.append(make_attn(block_in, using_sa=True)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample2x(block_in) |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, in_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, z): |
|
|
|
|
|
h = self.mid.block_2(self.mid.attn_1(self.mid.block_1(self.conv_in(z)))) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block](h) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
h = self.conv_out(F.silu(self.norm_out(h), inplace=True)) |
|
return h |