Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from clean import clean_data | |
from report import create_full_report, REPORT_DIR | |
import os | |
import tempfile | |
def clean_and_visualize(file, primary_key_column, progress=gr.Progress()): | |
# Load the data | |
df = pd.read_csv(file.name) | |
# Remove duplicates from the primary key column | |
df = df.drop_duplicates(subset=[primary_key_column], keep='first') | |
# Clean the data | |
cleaned_df = None | |
nonconforming_cells_before = None | |
process_times = None | |
removed_columns = None | |
removed_rows = None | |
for progress_value, status_text in clean_data(df, primary_key_column): | |
if isinstance(status_text, tuple): | |
cleaned_df, nonconforming_cells_before, process_times, removed_columns, removed_rows = status_text | |
progress(progress_value, desc="Cleaning completed") | |
else: | |
progress(progress_value, desc=status_text) | |
# Generate full visualization report | |
create_full_report( | |
df, | |
cleaned_df, | |
nonconforming_cells_before, | |
process_times, | |
removed_columns, | |
removed_rows, | |
primary_key_column | |
) | |
# Save cleaned DataFrame to a temporary CSV file | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.csv') as tmp_file: | |
cleaned_df.to_csv(tmp_file.name, index=False) | |
cleaned_csv_path = tmp_file.name | |
# Collect all generated images | |
image_files = [os.path.join(REPORT_DIR, f) for f in os.listdir(REPORT_DIR) if f.endswith('.png')] | |
return cleaned_csv_path, image_files | |
def launch_app(): | |
with gr.Blocks() as app: | |
gr.Markdown("# AI Data Cleaner") | |
with gr.Row(): | |
file_input = gr.File(label="Upload CSV File", file_count="single", file_types=[".csv"]) | |
with gr.Row(): | |
primary_key_dropdown = gr.Dropdown(label="Select Primary Key Column", choices=[], interactive=True) | |
with gr.Row(): | |
clean_button = gr.Button("Start Cleaning") | |
with gr.Row(): | |
progress_bar = gr.Progress() | |
with gr.Row(): | |
cleaned_file_output = gr.File(label="Cleaned CSV", visible=True) | |
with gr.Row(): | |
output_gallery = gr.Gallery( | |
label="Visualization Results", | |
show_label=True, | |
elem_id="gallery", | |
columns=[3], | |
rows=[3], | |
object_fit="contain", | |
height="auto", | |
visible=False | |
) | |
def update_primary_key_options(file): | |
if file is not None: | |
df = pd.read_csv(file.name) | |
return gr.Dropdown(choices=df.columns.tolist()) | |
def process_and_show_results(file, primary_key_column): | |
cleaned_csv_path, image_files = clean_and_visualize(file, primary_key_column, progress=progress_bar) | |
return ( | |
cleaned_csv_path, | |
gr.Gallery(visible=True, value=image_files) | |
) | |
file_input.change( | |
fn=update_primary_key_options, | |
inputs=file_input, | |
outputs=primary_key_dropdown | |
) | |
clean_button.click( | |
fn=process_and_show_results, | |
inputs=[file_input, primary_key_dropdown], | |
outputs=[cleaned_file_output, output_gallery] | |
) | |
app.launch() | |
if __name__ == "__main__": | |
launch_app() |