reab5555 commited on
Commit
7ba5af2
·
verified ·
1 Parent(s): ac2be1d

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +159 -0
  2. config.py +8 -0
app.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import faiss
4
+ import numpy as np
5
+ from langchain_huggingface import HuggingFaceEmbeddings
6
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
7
+ from langchain_community.vectorstores import FAISS
8
+ from langchain.chains import ConversationalRetrievalChain
9
+ from langchain.memory import ConversationBufferMemory
10
+ from langchain_core.documents import Document
11
+ from PyPDF2 import PdfReader
12
+ from langchain_anthropic import ChatAnthropic
13
+
14
+ API_KEY = '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'
15
+ llm = ChatAnthropic(model="claude-3-5-sonnet-20240620", temperature=0.5, max_tokens=8192, anthropic_api_key=API_KEY)
16
+
17
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
18
+
19
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
20
+
21
+ vector_store = None
22
+
23
+
24
+ def process_file(file_path):
25
+ _, ext = os.path.splitext(file_path)
26
+ try:
27
+ if ext.lower() == '.txt':
28
+ with open(file_path, 'r', encoding='utf-8') as file:
29
+ text = file.read()
30
+ elif ext.lower() == '.docx':
31
+ with open(file_path, 'rb') as file:
32
+ content = file.read()
33
+ text = content.decode('utf-8', errors='ignore')
34
+ elif ext.lower() == '.pdf':
35
+ with open(file_path, 'rb') as file:
36
+ pdf_reader = PdfReader(file)
37
+ text = '\n'.join([page.extract_text() for page in pdf_reader.pages if page.extract_text()])
38
+ else:
39
+ print(f"Unsupported file type: {ext}")
40
+ return None
41
+
42
+ return [Document(page_content=text, metadata={"source": file_path})]
43
+ except Exception as e:
44
+ print(f"Error processing file {file_path}: {str(e)}")
45
+ return None
46
+
47
+
48
+ def process_files(file_list, progress=gr.Progress()):
49
+ global vector_store
50
+ documents = []
51
+ total_files = len(file_list)
52
+
53
+ for i, file in enumerate(file_list):
54
+ progress((i + 1) / total_files, f"Processing file {i + 1} of {total_files}")
55
+ if file.name.lower().endswith(('.txt', '.docx', '.pdf')):
56
+ docs = process_file(file.name)
57
+ if docs:
58
+ documents.extend(docs)
59
+
60
+ if not documents:
61
+ return "No documents were successfully processed. Please check your files and try again."
62
+
63
+ progress(0.5, "Splitting text")
64
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=200)
65
+ texts = text_splitter.split_documents(documents)
66
+
67
+ progress(0.7, "Creating embeddings")
68
+ vector_store = FAISS.from_documents(texts, embeddings)
69
+
70
+ progress(0.9, "Saving vector store")
71
+ vector_store.save_local("faiss_index")
72
+
73
+ progress(1.0, "Completed")
74
+ return f"Embedding process completed and database created. Processed {len(documents)} files. You can now start chatting!"
75
+
76
+
77
+ def load_existing_index(folder_path):
78
+ global vector_store
79
+ try:
80
+ index_file = os.path.join(folder_path, "index.faiss")
81
+ pkl_file = os.path.join(folder_path, "index.pkl")
82
+
83
+ if not os.path.exists(index_file) or not os.path.exists(pkl_file):
84
+ return f"Error: FAISS index files not found in {folder_path}. Please ensure both 'index.faiss' and 'index.pkl' are present."
85
+
86
+ vector_store = FAISS.load_local(folder_path, embeddings, allow_dangerous_deserialization=True)
87
+ return f"Successfully loaded existing index from {folder_path}."
88
+ except Exception as e:
89
+ return f"Error loading index: {str(e)}"
90
+
91
+
92
+ def chat(message, history):
93
+ global vector_store
94
+ if vector_store is None:
95
+ return "Please load documents or an existing index first."
96
+
97
+ qa_chain = ConversationalRetrievalChain.from_llm(
98
+ llm,
99
+ vector_store.as_retriever(),
100
+ memory=memory
101
+ )
102
+
103
+ result = qa_chain.invoke({"question": message, "chat_history": history})
104
+ return result['answer']
105
+
106
+
107
+ def reset_chat():
108
+ global memory
109
+ memory.clear()
110
+ return []
111
+
112
+
113
+ with gr.Blocks() as demo:
114
+ gr.Markdown("# Document-based Chatbot")
115
+
116
+ with gr.Row():
117
+ with gr.Column():
118
+ file_input = gr.File(label="Select Files", file_count="multiple", file_types=[".pdf", ".docx", ".txt"])
119
+ process_button = gr.Button("Process Files")
120
+ with gr.Column():
121
+ index_folder = gr.Textbox(label="Existing Index Folder Path",
122
+ value="C:\\Works\\Data\\projects\\Python\\QA_Chatbot\\faiss_index")
123
+ load_index_button = gr.Button("Load Existing Index")
124
+
125
+ output = gr.Textbox(label="Processing Output")
126
+
127
+ chatbot = gr.Chatbot()
128
+ msg = gr.Textbox()
129
+ send = gr.Button("Send")
130
+ clear = gr.Button("Clear")
131
+
132
+
133
+ def process_selected_files(files):
134
+ if files:
135
+ return process_files(files)
136
+ else:
137
+ return "No files selected. Please select files and try again."
138
+
139
+
140
+ def load_selected_index(folder_path):
141
+ return load_existing_index(folder_path)
142
+
143
+
144
+ process_button.click(process_selected_files, file_input, output)
145
+ load_index_button.click(load_selected_index, index_folder, output)
146
+
147
+
148
+ def respond(message, chat_history):
149
+ bot_message = chat(message, chat_history)
150
+ chat_history.append((message, bot_message))
151
+ return "", chat_history
152
+
153
+
154
+ msg.submit(respond, [msg, chatbot], [msg, chatbot])
155
+ send.click(respond, [msg, chatbot], [msg, chatbot])
156
+ clear.click(reset_chat, None, chatbot)
157
+
158
+ if __name__ == "__main__":
159
+ demo.launch()
config.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # config.py
2
+ from langchain_anthropic import ChatAnthropic
3
+
4
+ # Get the API key
5
+ API_KEY = os.getenv('CLAUDE_API_KEY')
6
+
7
+ # Initialize the Anthropic Chat Model
8
+ llm = ChatAnthropic(model="claude-3-5-sonnet-20240620", temperature=0.1, max_tokens=8192, anthropic_api_key=API_KEY)