Multiple-Speakers-Personality-Analyzer / transcription_diarization.py
reab5555's picture
Update transcription_diarization.py
3405075 verified
import boto3
import time
import json
import os
import urllib.parse
from moviepy.editor import VideoFileClip
import requests
from botocore.exceptions import ClientError
from config import aws_access_key_id, aws_secret_access_key
def convert_to_wav(video_path):
base_name = os.path.splitext(os.path.basename(video_path))[0]
output_path = f"{base_name}.wav"
try:
video = VideoFileClip(video_path)
audio = video.audio
# Write the audio to WAV file
audio.write_audiofile(output_path, codec='pcm_s16le')
video.close()
audio.close()
return output_path
except Exception as e:
print(f"Error during audio conversion: {str(e)}")
return None
def upload_to_s3(local_file_path, bucket_name, s3_file_key):
s3_client = boto3.client('s3',
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name='eu-central-1')
s3_client.upload_file(local_file_path, bucket_name, s3_file_key)
return f's3://{bucket_name}/{s3_file_key}'
def transcribe_audio(file_uri, job_name):
transcribe = boto3.client('transcribe',
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name='eu-central-1')
transcribe.start_transcription_job(
TranscriptionJobName=job_name,
Media={'MediaFileUri': file_uri},
MediaFormat='wav',
IdentifyLanguage=True,
Settings={
'ShowSpeakerLabels': True,
'MaxSpeakerLabels': 4
}
)
while True:
status = transcribe.get_transcription_job(TranscriptionJobName=job_name)
if status['TranscriptionJob']['TranscriptionJobStatus'] in ['COMPLETED', 'FAILED']:
break
time.sleep(30)
if status['TranscriptionJob']['TranscriptionJobStatus'] == 'COMPLETED':
identified_language = status['TranscriptionJob']['LanguageCode']
print(f"Identified language: {identified_language}")
return status['TranscriptionJob']['Transcript']['TranscriptFileUri']
else:
print('Transcription Job returned None')
return None
def download_transcript(transcript_url):
try:
response = requests.get(transcript_url)
response.raise_for_status()
return json.loads(response.text)
except Exception as e:
print(f"Error downloading transcript: {e}")
return None
def extract_transcriptions_with_speakers(transcript_data):
segments = transcript_data['results']['speaker_labels']['segments']
items = transcript_data['results']['items']
current_speaker = None
current_text = []
transcriptions = []
speaker_mapping = {}
speaker_count = 0
for item in items:
if item['type'] == 'pronunciation':
start_time = float(item['start_time'])
end_time = float(item['end_time'])
content = item['alternatives'][0]['content']
speaker_segment = next((seg for seg in segments if float(seg['start_time']) <= start_time and float(seg['end_time']) >= end_time), None)
if speaker_segment:
speaker_label = speaker_segment['speaker_label']
# Map speaker labels to sequential numbers starting from 1
if speaker_label not in speaker_mapping:
speaker_count += 1
speaker_mapping[speaker_label] = f"Speaker {speaker_count}"
if speaker_mapping[speaker_label] != current_speaker:
if current_text:
transcriptions.append({
'speaker': current_speaker,
'text': ' '.join(current_text)
})
current_text = []
current_speaker = speaker_mapping[speaker_label]
current_text.append(content)
elif item['type'] == 'punctuation':
current_text[-1] += item['alternatives'][0]['content']
if current_text:
transcriptions.append({
'speaker': current_speaker,
'text': ' '.join(current_text)
})
return transcriptions
def diarize_audio(video_path):
# Convert video to WAV audio
wav_path = convert_to_wav(video_path)
if not wav_path:
return "Audio conversion failed."
bucket_name = 'transcriptionjobbucket1'
s3_file_key = os.path.basename(wav_path)
file_uri = upload_to_s3(wav_path, bucket_name, s3_file_key)
job_name = f'transcription_job_{int(time.time())}'
transcript_url = transcribe_audio(file_uri, job_name)
print('transcript url:', transcript_url)
if transcript_url:
transcript_data = download_transcript(transcript_url)
if transcript_data is None:
return "Failed to download transcript."
transcriptions = extract_transcriptions_with_speakers(transcript_data)
print('transcriptions:', transcriptions)
output = []
for i, trans in enumerate(transcriptions, 1):
output.append(f"[{i}. {trans['speaker']} | text: {trans['text']}]\n")
# Clean up: remove the temporary WAV file
os.remove(wav_path)
return '\n'.join(output)
else:
return "Transcription failed."