Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,84 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
iface.launch()
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
import gradio as gr
|
5 |
|
6 |
+
from transformers import pipeline
|
7 |
+
from huggingface_hub import InferenceClient
|
8 |
+
|
9 |
+
def _grab_best_device(use_gpu=True):
|
10 |
+
if torch.cuda.device_count() > 0 and use_gpu:
|
11 |
+
device = "cuda"
|
12 |
+
else:
|
13 |
+
device = "cpu"
|
14 |
+
return device
|
15 |
+
|
16 |
+
device = _grab_best_device()
|
17 |
+
|
18 |
+
title = """# MusiGen Prompt Upsampling"""
|
19 |
+
|
20 |
+
vibes = pipeline("text-to-audio",
|
21 |
+
"facebook/musicgen-stereo-medium",
|
22 |
+
torch_dtype=torch.float16,
|
23 |
+
device="cuda")
|
24 |
+
|
25 |
+
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta",)
|
26 |
+
|
27 |
+
|
28 |
+
# Inference
|
29 |
+
def generate_audio(text,):
|
30 |
+
prompt = f"Take the next sentence and enrich it with details. Keep it compact. {text}"
|
31 |
+
output = client.text_generation(prompt, max_new_tokens=100)
|
32 |
+
out = vibes(output)
|
33 |
+
audio = out["audio"][0]
|
34 |
+
|
35 |
+
return audio
|
36 |
+
|
37 |
+
css = """
|
38 |
+
#container{
|
39 |
+
margin: 0 auto;
|
40 |
+
max-width: 80rem;
|
41 |
+
}
|
42 |
+
#intro{
|
43 |
+
max-width: 100%;
|
44 |
+
text-align: center;
|
45 |
+
margin: 0 auto;
|
46 |
+
}
|
47 |
+
"""
|
48 |
+
|
49 |
+
# Gradio blocks demo
|
50 |
+
with gr.Blocks(css=css) as demo_blocks:
|
51 |
+
gr.Markdown(title, elem_id="intro")
|
52 |
+
|
53 |
+
with gr.Row():
|
54 |
+
with gr.Column():
|
55 |
+
inp_text = gr.Textbox(label="Input Prompt", info="What would you like MusicGen to synthesise?")
|
56 |
+
btn = gr.Button("Generate Music!🎶")
|
57 |
+
|
58 |
+
with gr.Column():
|
59 |
+
gr.Audio(type="numpy", autoplay=False, label=f"Generated Music", show_label=True,)
|
60 |
+
|
61 |
+
|
62 |
+
with gr.Accordion("Run MusicGen with Transformers 🤗", open=False):
|
63 |
+
gr.Markdown(
|
64 |
+
"""
|
65 |
+
import torch
|
66 |
+
import soundfile as sf
|
67 |
+
from transformers import pipeline
|
68 |
+
|
69 |
+
synthesiser = pipeline("text-to-audio",
|
70 |
+
"facebook/musicgen-stereo-medium",
|
71 |
+
device="cuda:0",
|
72 |
+
torch_dtype=torch.float16)
|
73 |
+
|
74 |
+
music = synthesiser("lo-fi music with a soothing melody", forward_params={"max_new_tokens": 256})
|
75 |
+
|
76 |
+
sf.write("musicgen_out.wav", music["audio"][0].T, music["sampling_rate"])
|
77 |
+
|
78 |
+
"""
|
79 |
+
)
|
80 |
+
|
81 |
+
btn.click(generate_audio, [inp_text, language], outputs)
|
82 |
+
|
83 |
|
84 |
+
demo_blocks.queue().launch()
|
|