Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,70 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import IPython.display as ipd
|
4 |
-
from pathlib import Path
|
5 |
-
from fairseq import hub_utils
|
6 |
-
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
|
7 |
-
from fairseq.models.speech_to_text.hub_interface import S2THubInterface
|
8 |
-
from fairseq.models.text_to_speech import CodeHiFiGANVocoder
|
9 |
-
from fairseq.models.text_to_speech.hub_interface import VocoderHubInterface
|
10 |
-
from huggingface_hub import snapshot_download
|
11 |
-
import json
|
12 |
-
import sounddevice as sd
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
# Load text-to-speech model
|
23 |
-
library_name = "fairseq"
|
24 |
-
cache_dir = (Path.home() / ".cache" / library_name).as_posix()
|
25 |
-
cache_dir = snapshot_download(
|
26 |
-
f"facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur",
|
27 |
-
cache_dir=cache_dir,
|
28 |
-
library_name=library_name,
|
29 |
-
)
|
30 |
-
|
31 |
-
x = hub_utils.from_pretrained(
|
32 |
-
cache_dir,
|
33 |
-
"model.pt",
|
34 |
-
".",
|
35 |
-
archive_map=CodeHiFiGANVocoder.hub_models(),
|
36 |
-
config_yaml="config.json",
|
37 |
-
fp16=False,
|
38 |
-
is_vocoder=True,
|
39 |
-
)
|
40 |
-
|
41 |
-
with open(f"{x['args']['data']}/config.json") as f:
|
42 |
-
vocoder_cfg = json.load(f)
|
43 |
-
|
44 |
-
assert len(x["args"]["model_path"]) == 1, "Too many vocoder models in the input"
|
45 |
-
|
46 |
-
vocoder = CodeHiFiGANVocoder(x["args"]["model_path"][0], vocoder_cfg)
|
47 |
-
tts_model = VocoderHubInterface(vocoder_cfg, vocoder)
|
48 |
-
|
49 |
-
|
50 |
-
def record_and_transcribe_synthesize():
|
51 |
-
# Record audio using sounddevice
|
52 |
-
sr = 16000 # Sample rate
|
53 |
-
duration = 5 # Recording duration in seconds
|
54 |
-
audio = sd.rec(int(sr * duration), samplerate=sr, channels=1, dtype=np.int16)
|
55 |
-
sd.wait()
|
56 |
-
|
57 |
-
# Speech-to-Text
|
58 |
-
sample = S2THubInterface.get_model_input(task, audio)
|
59 |
-
unit = S2THubInterface.get_prediction(task, models[0], generator, sample)
|
60 |
-
|
61 |
-
# Text-to-Speech
|
62 |
-
tts_sample = tts_model.get_model_input(unit)
|
63 |
-
wav, sr = tts_model.get_prediction(tts_sample)
|
64 |
-
|
65 |
-
return ipd.Audio(wav, rate=sr)
|
66 |
-
|
67 |
-
|
68 |
-
# Gradio Interface
|
69 |
-
iface = gr.Interface(fn=record_and_transcribe_synthesize, inputs=None, outputs="audio")
|
70 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
def audio_receiver(audio_data):
|
4 |
+
# Process or analyze the received audio data
|
5 |
+
# For simplicity, let's just return the received audio data
|
6 |
+
return audio_data
|
7 |
+
|
8 |
+
# Create a Gradio Interface
|
9 |
+
iface = gr.Interface(
|
10 |
+
fn=audio_receiver,
|
11 |
+
inputs="microphone",
|
12 |
+
outputs="audio",
|
13 |
+
live=True, # Set live to True for real-time audio processing
|
14 |
+
capture_session=True # Use capture_session for continuous microphone input
|
15 |
)
|
16 |
|
17 |
+
# Launch the Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
iface.launch()
|