from course_search.search_system.data_pipeline import DataPipeline import logging def test_pipeline(): pipeline = DataPipeline() # Run pipeline and save results df = pipeline.run_pipeline(save_path='data/courses_with_embeddings.pkl') # Print results print("\nDataFrame Info:") print(df.info()) print("\nSample Course:") print(df.iloc[0][['title', 'description']].to_dict()) print("\nSample Embedding Shape:", df.iloc[0]['embeddings'].shape) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) test_pipeline()