File size: 15,285 Bytes
02f3f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09ae4e4
 
 
 
 
 
 
 
 
02f3f24
 
09ae4e4
02f3f24
 
09ae4e4
 
02f3f24
 
 
 
 
 
 
 
 
 
 
09ae4e4
 
 
 
 
02f3f24
 
 
 
 
 
 
 
 
09ae4e4
02f3f24
 
 
 
 
 
 
 
09ae4e4
02f3f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import IterableDataset, DataLoader
from torchvision import transforms
from torchvision.utils import make_grid
import mlflow
import matplotlib.pyplot as plt
from tqdm import tqdm
import numpy as np
from skimage.color import rgb2lab, lab2rgb
from datasets import load_dataset
from PIL import Image
from itertools import islice
import traceback

# MLflow setup
EXPERIMENT_NAME = "Colorizer_Experiment"

def setup_mlflow():
    experiment = mlflow.get_experiment_by_name(EXPERIMENT_NAME)
    if experiment is None:
        experiment_id = mlflow.create_experiment(EXPERIMENT_NAME)
    else:
        experiment_id = experiment.experiment_id
    return experiment_id

# Data ingestion
class ColorizeIterableDataset(IterableDataset):
    def __init__(self, dataset, transform=None):
        self.dataset = dataset
        self.transform = transform

    def __iter__(self):
        for item in self.dataset:
            try:
                img = item['image']
                if img.mode != 'RGB':
                    img = img.convert('RGB')
                if self.transform:
                    img = self.transform(img)
                
                # Add shape check after transform
                if img.shape != (3, 256, 256):
                    print(f"Unexpected image shape after transform: {img.shape}")
                    continue

                lab = rgb2lab(img.permute(1, 2, 0).numpy())
                
                # Add shape check after rgb2lab conversion
                if lab.shape != (256, 256, 3):
                    print(f"Unexpected lab shape: {lab.shape}")
                    continue

                l_chan = lab[:, :, 0]
                l_chan = (l_chan - 50) / 50
                ab_chan = lab[:, :, 1:]
                ab_chan = ab_chan / 128
                
                yield torch.Tensor(l_chan).unsqueeze(0), torch.Tensor(ab_chan).permute(2, 0, 1)
            except Exception as e:
                print(f"Error processing image: {str(e)}")
                continue

def create_dataloaders(batch_size=32):
    try:
        print("Loading ImageNet dataset in streaming mode...")
        dataset = load_dataset("imagenet-1k", split="train", streaming=True)
        print("Dataset loaded in streaming mode.")
        
        print("Creating custom dataset...")
        transform = transforms.Compose([
            transforms.Resize((256, 256)),  # Resize all images to 256x256
            transforms.ToTensor()
        ])
        train_dataset = ColorizeIterableDataset(dataset, transform=transform)
        print("Custom dataset created.")
        
        print("Creating dataloader...")
        train_dataloader = DataLoader(train_dataset, batch_size=batch_size, num_workers=4)
        print("Dataloader created.")
        
        return train_dataloader
    except Exception as e:
        print(f"Error in create_dataloaders: {str(e)}")
        return None

# Model definition
class UNetBlock(nn.Module):
    def __init__(self, in_channels, out_channels, down=True, bn=True, dropout=False):
        super(UNetBlock, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, 4, 2, 1, bias=False) if down \
            else nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1, bias=False)
        self.bn = nn.BatchNorm2d(out_channels) if bn else None
        self.dropout = nn.Dropout(0.5) if dropout else None
        self.down = down

    def forward(self, x):
        x = self.conv(x)
        if self.bn:
            x = self.bn(x)
        if self.dropout:
            x = self.dropout(x)
        return nn.ReLU()(x) if self.down else nn.ReLU(inplace=True)(x)

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.down1 = UNetBlock(1, 64, bn=False)
        self.down2 = UNetBlock(64, 128)
        self.down3 = UNetBlock(128, 256)
        self.down4 = UNetBlock(256, 512)
        self.down5 = UNetBlock(512, 512)
        self.down6 = UNetBlock(512, 512)
        self.down7 = UNetBlock(512, 512)
        self.down8 = UNetBlock(512, 512, bn=False)
        
        self.up1 = UNetBlock(512, 512, down=False, dropout=True)
        self.up2 = UNetBlock(1024, 512, down=False, dropout=True)
        self.up3 = UNetBlock(1024, 512, down=False, dropout=True)
        self.up4 = UNetBlock(1024, 512, down=False)
        self.up5 = UNetBlock(1024, 256, down=False)
        self.up6 = UNetBlock(512, 128, down=False)
        self.up7 = UNetBlock(256, 64, down=False)
        self.up8 = nn.ConvTranspose2d(128, 2, 4, 2, 1)

    def forward(self, x):
        d1 = self.down1(x)
        d2 = self.down2(d1)
        d3 = self.down3(d2)
        d4 = self.down4(d3)
        d5 = self.down5(d4)
        d6 = self.down6(d5)
        d7 = self.down7(d6)
        d8 = self.down8(d7)
        
        u1 = self.up1(d8)
        u2 = self.up2(torch.cat([u1, d7], 1))
        u3 = self.up3(torch.cat([u2, d6], 1))
        u4 = self.up4(torch.cat([u3, d5], 1))
        u5 = self.up5(torch.cat([u4, d4], 1))
        u6 = self.up6(torch.cat([u5, d3], 1))
        u7 = self.up7(torch.cat([u6, d2], 1))
        return torch.tanh(self.up8(torch.cat([u7, d1], 1)))

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 64, 4, stride=2, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, 128, 4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(128, 256, 4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(256, 512, 4, padding=1),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(512, 1, 4, padding=1)
        )

    def forward(self, x):
        return self.model(x)

def init_weights(model):
    classname = model.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(model.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(model.weight.data, 1.0, 0.02)
        nn.init.constant_(model.bias.data, 0)

# Training utilities
def lab_to_rgb(L, ab):
    L = (L + 1.) * 50.
    ab = ab * 128.
    Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
    rgb_imgs = []
    for img in Lab:
        img_rgb = lab2rgb(img)
        rgb_imgs.append(img_rgb)
    return np.stack(rgb_imgs, axis=0)

def visualize_results(epoch, generator, train_loader, device):
    generator.eval()
    with torch.no_grad():
        try:
            for inputs, real_AB in train_loader:
                print(f"Input shape: {inputs.shape}, real_AB shape: {real_AB.shape}")
                
                # Ensure inputs have the correct shape (B, 1, H, W)
                if inputs.shape[1] != 1:
                    inputs = inputs.unsqueeze(1)
                
                inputs, real_AB = inputs.to(device), real_AB.to(device)
                fake_AB = generator(inputs)
                
                print(f"fake_AB shape: {fake_AB.shape}")
                
                # Ensure fake_AB and real_AB have the correct shape (B, 2, H, W)
                if fake_AB.shape[1] != 2:
                    fake_AB = fake_AB.view(fake_AB.shape[0], 2, fake_AB.shape[2], fake_AB.shape[3])
                if real_AB.shape[1] != 2:
                    real_AB = real_AB.view(real_AB.shape[0], 2, real_AB.shape[2], real_AB.shape[3])
                
                fake_rgb = lab_to_rgb(inputs.cpu(), fake_AB.cpu())
                real_rgb = lab_to_rgb(inputs.cpu(), real_AB.cpu())
                
                print(f"fake_rgb shape: {fake_rgb.shape}, real_rgb shape: {real_rgb.shape}")
                
                concatenated = np.concatenate([real_rgb, fake_rgb], axis=2)  # Changed axis from 3 to 2
                print(f"Concatenated shape: {concatenated.shape}")
                
                img_grid = make_grid(torch.from_numpy(concatenated).permute(0, 3, 1, 2), normalize=True, nrow=4)
                
                plt.figure(figsize=(15, 15))
                plt.imshow(img_grid.permute(1, 2, 0).cpu())
                plt.axis('off')
                plt.title(f'Epoch {epoch}')
                plt.savefig(f'results/epoch_{epoch}.png')
                mlflow.log_artifact(f'results/epoch_{epoch}.png')
                plt.close()
                break
        except Exception as e:
            print(f"Error in visualize_results: {str(e)}")
            traceback.print_exc()
    generator.train()

def save_checkpoint(state, filename="checkpoint.pth.tar"):
    # Only save the necessary state
    save_state = {
        'epoch': state['epoch'],
        'generator_state_dict': state['generator_state_dict'],
        'discriminator_state_dict': state['discriminator_state_dict'],
        'optimizerG_state_dict': state['optimizerG_state_dict'],
        'optimizerD_state_dict': state['optimizerD_state_dict'],
    }
    torch.save(save_state, filename)
    mlflow.log_artifact(filename)

def load_checkpoint(filename, generator, discriminator, optimizerG, optimizerD, device):
    if os.path.isfile(filename):
        print(f"Loading checkpoint '{filename}'")
        # Use weights_only=True for safer loading
        checkpoint = torch.load(filename, map_location=device, weights_only=True)
        start_epoch = checkpoint['epoch'] + 1
        generator.load_state_dict(checkpoint['generator_state_dict'])
        discriminator.load_state_dict(checkpoint['discriminator_state_dict'])
        optimizerG.load_state_dict(checkpoint['optimizerG_state_dict'])
        optimizerD.load_state_dict(checkpoint['optimizerD_state_dict'])
        print(f"Loaded checkpoint '{filename}' (epoch {checkpoint['epoch']})")
        return start_epoch
    else:
        print(f"No checkpoint found at '{filename}'")
        return 0

# Global variables
checkpoint_dir = "checkpoints"
os.makedirs(checkpoint_dir, exist_ok=True)
os.makedirs("results", exist_ok=True)

# Training function
def train(generator, discriminator, train_loader, num_epochs, device, lr=0.0002, beta1=0.5):
    criterion = nn.BCEWithLogitsLoss()
    l1_loss = nn.L1Loss()

    optimizerG = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999))
    optimizerD = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999))

    checkpoint_path = os.path.join(checkpoint_dir, "latest_checkpoint.pth.tar")
    start_epoch = load_checkpoint(checkpoint_path, generator, discriminator, optimizerG, optimizerD, device)

    experiment_id = setup_mlflow()
    with mlflow.start_run(experiment_id=experiment_id, run_name="training_run") as run:
        try:
            for epoch in range(start_epoch, num_epochs):
                generator.train()
                discriminator.train()

                num_iterations = 2000
                pbar = tqdm(enumerate(islice(train_loader, num_iterations)), total=num_iterations, desc=f"Epoch {epoch+1}/{num_epochs}")
                
                for i, (real_L, real_AB) in pbar:
                    # Add shape check
                    if real_L.shape[1:] != (1, 256, 256) or real_AB.shape[1:] != (2, 256, 256):
                        print(f"Unexpected tensor shapes: real_L {real_L.shape}, real_AB {real_AB.shape}")
                        continue

                    real_L, real_AB = real_L.to(device), real_AB.to(device)
                    batch_size = real_L.size(0)

                    # Train Discriminator
                    optimizerD.zero_grad()

                    fake_AB = generator(real_L)
                    fake_LAB = torch.cat([real_L, fake_AB], dim=1)
                    real_LAB = torch.cat([real_L, real_AB], dim=1)

                    pred_fake = discriminator(fake_LAB.detach())
                    loss_D_fake = criterion(pred_fake, torch.zeros_like(pred_fake))

                    pred_real = discriminator(real_LAB)
                    loss_D_real = criterion(pred_real, torch.ones_like(pred_real))

                    loss_D = (loss_D_fake + loss_D_real) * 0.5
                    loss_D.backward()
                    optimizerD.step()

                    # Train Generator
                    optimizerG.zero_grad()

                    fake_AB = generator(real_L)
                    fake_LAB = torch.cat([real_L, fake_AB], dim=1)
                    pred_fake = discriminator(fake_LAB)

                    loss_G_GAN = criterion(pred_fake, torch.ones_like(pred_fake))
                    loss_G_L1 = l1_loss(fake_AB, real_AB) * 100  # L1 loss weight

                    loss_G = loss_G_GAN + loss_G_L1
                    loss_G.backward()
                    optimizerG.step()

                    pbar.set_postfix({
                        'D_loss': loss_D.item(),
                        'G_loss': loss_G.item(),
                        'G_L1': loss_G_L1.item()
                    })  

                    mlflow.log_metrics({
                        "D_loss": loss_D.item(),
                        "G_loss": loss_G.item(),
                        "G_L1_loss": loss_G_L1.item()
                    }, step=epoch * num_iterations + i)

                visualize_results(epoch, generator, train_loader, device)

                checkpoint = {
                    'epoch': epoch,
                    'generator_state_dict': generator.state_dict(),
                    'discriminator_state_dict': discriminator.state_dict(),
                    'optimizerG_state_dict': optimizerG.state_dict(),
                    'optimizerD_state_dict': optimizerD.state_dict(),
                }
                save_checkpoint(checkpoint, filename=checkpoint_path)

            print("Training completed successfully.")
            
            mlflow.pytorch.log_model(generator, "generator_model")
            model_uri = f"runs:/{run.info.run_id}/generator_model"
            mlflow.register_model(model_uri, "colorizer_generator")
            
            return run.info.run_id
            
        except Exception as e:
            print(f"Error during training: {str(e)}")
            mlflow.log_param("error", str(e))
            return None

# Main execution
if __name__ == "__main__":
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    try:
        batch_size = 32
        num_epochs = 50

        train_loader = create_dataloaders(batch_size=batch_size)
        if train_loader is None:
            raise Exception("Failed to create dataloader")

        generator = Generator().to(device)
        discriminator = Discriminator().to(device)

        generator.apply(init_weights)
        discriminator.apply(init_weights)

        run_id = train(generator, discriminator, train_loader, num_epochs=num_epochs, device=device)
        if run_id:
            print(f"Training completed successfully. Run ID: {run_id}")
            with open("latest_run_id.txt", "w") as f:
                f.write(run_id)
        else:
            print("Training failed!")
    except Exception as e:
        print(f"Critical error in main execution: {str(e)}")