|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
class UNetBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, down=True, bn=True, dropout=False): |
|
super(UNetBlock, self).__init__() |
|
self.conv = nn.Conv2d(in_channels, out_channels, 4, 2, 1, bias=False) if down \ |
|
else nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1, bias=False) |
|
self.bn = nn.BatchNorm2d(out_channels) if bn else None |
|
self.dropout = nn.Dropout(0.5) if dropout else None |
|
self.down = down |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
if self.bn: |
|
x = self.bn(x) |
|
if self.dropout: |
|
x = self.dropout(x) |
|
return F.relu(x) if self.down else F.relu(x, inplace=True) |
|
|
|
class Generator(nn.Module): |
|
def __init__(self): |
|
super(Generator, self).__init__() |
|
self.down1 = UNetBlock(1, 64, bn=False) |
|
self.down2 = UNetBlock(64, 128) |
|
self.down3 = UNetBlock(128, 256) |
|
self.down4 = UNetBlock(256, 512) |
|
self.down5 = UNetBlock(512, 512) |
|
self.down6 = UNetBlock(512, 512) |
|
self.down7 = UNetBlock(512, 512) |
|
self.down8 = UNetBlock(512, 512, bn=False) |
|
|
|
self.up1 = UNetBlock(512, 512, down=False, dropout=True) |
|
self.up2 = UNetBlock(1024, 512, down=False, dropout=True) |
|
self.up3 = UNetBlock(1024, 512, down=False, dropout=True) |
|
self.up4 = UNetBlock(1024, 512, down=False) |
|
self.up5 = UNetBlock(1024, 256, down=False) |
|
self.up6 = UNetBlock(512, 128, down=False) |
|
self.up7 = UNetBlock(256, 64, down=False) |
|
self.up8 = nn.ConvTranspose2d(128, 2, 4, 2, 1) |
|
|
|
def forward(self, x): |
|
d1 = self.down1(x) |
|
d2 = self.down2(d1) |
|
d3 = self.down3(d2) |
|
d4 = self.down4(d3) |
|
d5 = self.down5(d4) |
|
d6 = self.down6(d5) |
|
d7 = self.down7(d6) |
|
d8 = self.down8(d7) |
|
|
|
u1 = self.up1(d8) |
|
u2 = self.up2(torch.cat([u1, d7], 1)) |
|
u3 = self.up3(torch.cat([u2, d6], 1)) |
|
u4 = self.up4(torch.cat([u3, d5], 1)) |
|
u5 = self.up5(torch.cat([u4, d4], 1)) |
|
u6 = self.up6(torch.cat([u5, d3], 1)) |
|
u7 = self.up7(torch.cat([u6, d2], 1)) |
|
return torch.tanh(self.up8(torch.cat([u7, d1], 1))) |
|
|
|
class Discriminator(nn.Module): |
|
def __init__(self): |
|
super(Discriminator, self).__init__() |
|
self.model = nn.Sequential( |
|
nn.Conv2d(3, 64, 4, stride=2, padding=1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Conv2d(64, 128, 4, stride=2, padding=1), |
|
nn.BatchNorm2d(128), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Conv2d(128, 256, 4, stride=2, padding=1), |
|
nn.BatchNorm2d(256), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Conv2d(256, 512, 4, padding=1), |
|
nn.BatchNorm2d(512), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Conv2d(512, 1, 4, padding=1) |
|
) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
def init_weights(model): |
|
classname = model.__class__.__name__ |
|
if classname.find('Conv') != -1: |
|
nn.init.normal_(model.weight.data, 0.0, 0.02) |
|
elif classname.find('BatchNorm') != -1: |
|
nn.init.normal_(model.weight.data, 1.0, 0.02) |
|
nn.init.constant_(model.bias.data, 0) |
|
|
|
def create_models(): |
|
try: |
|
print("Creating Generator...") |
|
generator = Generator() |
|
generator.apply(init_weights) |
|
print("Generator created successfully.") |
|
|
|
print("Creating Discriminator...") |
|
discriminator = Discriminator() |
|
discriminator.apply(init_weights) |
|
print("Discriminator created successfully.") |
|
|
|
return generator, discriminator |
|
except Exception as e: |
|
print(f"Error in creating models: {str(e)}") |
|
return None, None |
|
|
|
def test_models(): |
|
print("Testing models...") |
|
try: |
|
generator, discriminator = create_models() |
|
if generator is None or discriminator is None: |
|
raise Exception("Model creation failed") |
|
|
|
test_input_g = torch.randn(1, 1, 256, 256) |
|
test_output_g = generator(test_input_g) |
|
if test_output_g.shape != torch.Size([1, 2, 256, 256]): |
|
raise Exception(f"Unexpected generator output shape: {test_output_g.shape}") |
|
|
|
test_input_d = torch.randn(1, 3, 256, 256) |
|
test_output_d = discriminator(test_input_d) |
|
if test_output_d.shape != torch.Size([1, 1, 30, 30]): |
|
raise Exception(f"Unexpected discriminator output shape: {test_output_d.shape}") |
|
|
|
print("Model test passed.") |
|
return True |
|
except Exception as e: |
|
print(f"Model test failed: {str(e)}") |
|
return False |
|
|
|
if __name__ == "__main__": |
|
try: |
|
print("Initializing models...") |
|
generator, discriminator = create_models() |
|
|
|
if generator is None or discriminator is None: |
|
raise Exception("Failed to create models") |
|
|
|
if not test_models(): |
|
raise Exception("Model testing failed") |
|
|
|
print("Model creation and testing completed successfully.") |
|
except Exception as e: |
|
print(f"Critical error in main execution: {str(e)}") |