File size: 5,974 Bytes
3b8cdb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import argparse
import pdb
import time
from PIL import Image
import cv2
import numpy as np
from caption_anything.captioner import build_captioner, BaseCaptioner
from caption_anything.segmenter import build_segmenter
from caption_anything.text_refiner import build_text_refiner


class CaptionAnything:
    def __init__(self, args, api_key="", captioner=None, segmenter=None, text_refiner=None):
        self.args = args
        self.captioner = build_captioner(args.captioner, args.device, args) if captioner is None else captioner
        self.segmenter = build_segmenter(args.segmenter, args.device, args) if segmenter is None else segmenter

        self.text_refiner = None
        if not args.disable_gpt:
            if text_refiner is not None:
                self.text_refiner = text_refiner
            else:
                self.init_refiner(api_key)

    @property
    def image_embedding(self):
        return self.segmenter.image_embedding

    @image_embedding.setter
    def image_embedding(self, image_embedding):
        self.segmenter.image_embedding = image_embedding

    @property
    def original_size(self):
        return self.segmenter.predictor.original_size

    @original_size.setter
    def original_size(self, original_size):
        self.segmenter.predictor.original_size = original_size

    @property
    def input_size(self):
        return self.segmenter.predictor.input_size

    @input_size.setter
    def input_size(self, input_size):
        self.segmenter.predictor.input_size = input_size

    def setup(self, image_embedding, original_size, input_size, is_image_set):
        self.image_embedding = image_embedding
        self.original_size = original_size
        self.input_size = input_size
        self.segmenter.predictor.is_image_set = is_image_set

    def init_refiner(self, api_key):
        try:
            self.text_refiner = build_text_refiner(self.args.text_refiner, self.args.device, self.args, api_key)
            self.text_refiner.llm('hi')  # test
        except:
            self.text_refiner = None
            print('OpenAI GPT is not available')

    def inference(self, image, prompt, controls, disable_gpt=False, enable_wiki=False):
        # TODO: Add support to multiple seg masks.

        #  segment with prompt
        print("CA prompt: ", prompt, "CA controls", controls)
        seg_mask = self.segmenter.inference(image, prompt)[0, ...]

        if self.args.enable_morphologyex:
            seg_mask = 255 * seg_mask.astype(np.uint8)
            seg_mask = np.stack([seg_mask, seg_mask, seg_mask], axis=-1)
            seg_mask = cv2.morphologyEx(seg_mask, cv2.MORPH_OPEN, kernel=np.ones((6, 6), np.uint8))
            seg_mask = cv2.morphologyEx(seg_mask, cv2.MORPH_CLOSE, kernel=np.ones((6, 6), np.uint8))
            seg_mask = seg_mask[:, :, 0] > 0
        mask_save_path = f'result/mask_{time.time()}.png'
        if not os.path.exists(os.path.dirname(mask_save_path)):
            os.makedirs(os.path.dirname(mask_save_path))
        seg_mask_img = Image.fromarray(seg_mask.astype('int') * 255.)
        if seg_mask_img.mode != 'RGB':
            seg_mask_img = seg_mask_img.convert('RGB')
        seg_mask_img.save(mask_save_path)
        print('seg_mask path: ', mask_save_path)
        print("seg_mask.shape: ", seg_mask.shape)

        #  captioning with mask
        if self.args.enable_reduce_tokens:
            caption, crop_save_path = self.captioner. \
                inference_with_reduced_tokens(image, seg_mask,
                                              crop_mode=self.args.seg_crop_mode,
                                              filter=self.args.clip_filter,
                                              disable_regular_box=self.args.disable_regular_box)
        else:
            caption, crop_save_path = self.captioner. \
                inference_seg(image, seg_mask, crop_mode=self.args.seg_crop_mode,
                              filter=self.args.clip_filter,
                              disable_regular_box=self.args.disable_regular_box)

        #  refining with TextRefiner
        context_captions = []
        if self.args.context_captions:
            context_captions.append(self.captioner.inference(image))
        if not disable_gpt and self.text_refiner is not None:
            refined_caption = self.text_refiner.inference(query=caption, controls=controls, context=context_captions,
                                                          enable_wiki=enable_wiki)
        else:
            refined_caption = {'raw_caption': caption}
        out = {'generated_captions': refined_caption,
               'crop_save_path': crop_save_path,
               'mask_save_path': mask_save_path,
               'mask': seg_mask_img,
               'context_captions': context_captions}
        return out


if __name__ == "__main__":
    from caption_anything.utils.parser import parse_augment

    args = parse_augment()
    # image_path = 'test_images/img3.jpg'
    image_path = 'test_images/img1.jpg'
    prompts = [
        {
            "prompt_type": ["click"],
            "input_point": [[500, 300], [200, 500]],
            "input_label": [1, 0],
            "multimask_output": "True",
        },
        {
            "prompt_type": ["click"],
            "input_point": [[300, 800]],
            "input_label": [1],
            "multimask_output": "True",
        }
    ]
    controls = {
        "length": "30",
        "sentiment": "positive",
        # "imagination": "True",
        "imagination": "False",
        "language": "English",
    }

    model = CaptionAnything(args, os.environ['OPENAI_API_KEY'])
    for prompt in prompts:
        print('*' * 30)
        print('Image path: ', image_path)
        image = Image.open(image_path)
        print(image)
        print('Visual controls (SAM prompt):\n', prompt)
        print('Language controls:\n', controls)
        out = model.inference(image_path, prompt, controls)