import os
import gradio as gr
import requests
import json
from PIL import Image
css = """
.example-image img{
display: flex; /* Use flexbox to align items */
justify-content: center; /* Center the image horizontally */
align-items: center; /* Center the image vertically */
height: 300px; /* Set the height of the container */
object-fit: contain; /* Preserve aspect ratio while fitting the image within the container */
}
.example-image{
display: flex; /* Use flexbox to align items */
justify-content: center; /* Center the image horizontally */
align-items: center; /* Center the image vertically */
height: 350px; /* Set the height of the container */
object-fit: contain; /* Preserve aspect ratio while fitting the image within the container */
}
.face-row {
display: flex;
justify-content: space-around; /* Distribute space evenly between elements */
align-items: center; /* Align items vertically */
width: 100%; /* Set the width of the row to 100% */
}
.face-image{
justify-content: center; /* Center the image horizontally */
align-items: center; /* Center the image vertically */
height: 160px; /* Set the height of the container */
width: 160px;
object-fit: contain; /* Preserve aspect ratio while fitting the image within the container */
}
.face-image img{
justify-content: center; /* Center the image horizontally */
align-items: center; /* Center the image vertically */
height: 160px; /* Set the height of the container */
object-fit: contain; /* Preserve aspect ratio while fitting the image within the container */
}
.markdown-success-container {
background-color: #F6FFED;
padding: 20px;
margin: 20px;
border-radius: 1px;
border: 2px solid green;
text-align: center;
}
.markdown-fail-container {
background-color: #FFF1F0;
padding: 20px;
margin: 20px;
border-radius: 1px;
border: 2px solid red;
text-align: center;
}
.markdown-attribute-container {
display: flex;
justify-content: space-around; /* Distribute space evenly between elements */
align-items: center; /* Align items vertically */
padding: 10px;
margin: 10px;
}
.block-background {
# background-color: #202020; /* Set your desired background color */
border-radius: 5px;
}
"""
def convert_fun(input_str):
# Remove line breaks and extra whitespaces
return ' '.join(input_str.split())
def get_attributes(json):
liveness_thr = 0.5
liveness = "GENUINE" if json.get('liveness') >= liveness_thr else "FAKE"
attr = json.get('attribute')
age = attr.get('age')
gender = attr.get('gender')
emotion = attr.get('emotion')
ethnicity = attr.get('ethnicity')
mask = attr.get('face_mask')
glass = 'No Glasses'
if attr.get('glasses') == 'USUAL':
glass = 'Glasses'
if attr.get('glasses') == 'DARK':
glass = 'Sunglasses'
open_eye_thr = 0.3
left_eye = 'Close'
if attr.get('eye_left') >= open_eye_thr:
left_eye = 'Open'
right_eye = 'Close'
if attr.get('eye_right') >= open_eye_thr:
right_eye = 'Open'
facehair = attr.get('facial_hair')
haircolor = attr.get('hair_color')
hairtype = attr.get('hair_type')
headwear = attr.get('headwear')
eating = 'No'
eat_thr = 0.5
if attr.get('food_consumption') >= eat_thr:
eating = 'Yes'
phone_record_thr = 0.5
phone_recording = 'No'
if attr.get('phone_recording') >= phone_record_thr:
phone_recording = 'Yes'
phone_use_thr = 0.5
phone_use = 'No'
if attr.get('phone_use') >= phone_use_thr:
phone_use = 'Yes'
seatbelt = 'No'
seatbelt_thr = 0.5
if attr.get('seatbelt') >= seatbelt_thr:
seatbelt = 'Yes'
smoking = 'No'
smoking_thr = 0.5
if attr.get('smoking') >= smoking_thr:
smoking = 'Yes'
pitch = attr.get('pitch')
roll = attr.get('roll')
yaw = attr.get('yaw')
quality = attr.get('quality')
attribute = f"""
Attribute |
Result |
Score |
Threshold |
Liveness |
{liveness} |
{"{:.4f}".format(json.get('liveness'))} |
{liveness_thr} |
Gender |
{gender} |
| |
Age |
{int(age)} |
| |
Pitch |
{"{:.4f}".format(pitch)} |
| |
Yaw |
{"{:.4f}".format(yaw)} |
| |
Roll |
{"{:.4f}".format(roll)} |
| |
Emotion |
{emotion} |
| |
Left Eye |
{left_eye} |
{"{:.4f}".format(attr.get('eye_left'))} |
{open_eye_thr} |
Right Eye |
{right_eye} |
{"{:.4f}".format(attr.get('eye_right'))} |
{open_eye_thr} |
Mask |
{mask} |
| |
Glass |
{glass} |
| |
FaceHair |
{facehair} |
| |
HairColor |
{haircolor} |
| |
HairType |
{hairtype} |
| |
HeadWear |
{headwear} |
| |
Eating |
{eating} |
{"{:.4f}".format(attr.get('food_consumption'))} |
{eat_thr} |
Phone Use |
{phone_use} |
{"{:.4f}".format(attr.get('phone_use'))} |
{phone_use_thr} |
Smoking |
{smoking} |
{"{:.4f}".format(attr.get('smoking'))} |
{smoking_thr} |
Image Quality |
{"{:.4f}".format(quality)} |
| |
"""
one_line_attribute = convert_fun(attribute)
if liveness == 'GENUINE':
liveness_result = f"""
"""
else:
liveness_result = f"""
"""
return liveness_result, one_line_attribute
def analyze_face(frame):
url = "https://recognito.p.rapidapi.com/api/analyze_face"
try:
files = {'image': open(frame, 'rb')}
headers = {"X-RapidAPI-Key": os.environ.get("API_KEY")}
r = requests.post(url=url, files=files, headers=headers)
except:
raise gr.Error("Please select images files!")
faces = None
try:
image = Image.open(frame)
face = Image.new('RGBA',(150, 150), (80,80,80,0))
liveness, age, gender, emotion, ethnicity, mask, eye, facehair, haircolor, hairtype, headwear, activity, pitch, roll, yaw, quality = [None] * 16
res = r.json().get('image')
if res is not None and res:
face = res.get('detection')
x1 = face.get('x')
y1 = face.get('y')
x2 = x1 + face.get('w')
y2 = y1 + face.get('h')
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image.width:
x2 = image.width - 1
if y2 >= image.height:
y2 = image.height - 1
face_crop = image.crop((x1, y1, x2, y2))
face_image_ratio = face_crop.width / float(face_crop.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face_crop = face_crop.resize((int(resized_w), int(resized_h)))
liveness, attribute = get_attributes(res)
except:
pass
return [face_crop, liveness, attribute]
def compare_face(frame1, frame2):
url = "https://recognito.p.rapidapi.com/api/compare_face"
try:
files = {'image1': open(frame1, 'rb'), 'image2': open(frame2, 'rb')}
headers = {"X-RapidAPI-Key": os.environ.get("API_KEY")}
r = requests.post(url=url, files=files, headers=headers)
except:
raise gr.Error("Please select images files!")
faces = None
try:
image1 = Image.open(frame1)
image2 = Image.open(frame2)
face1 = Image.new('RGBA',(150, 150), (80,80,80,0))
face2 = Image.new('RGBA',(150, 150), (80,80,80,0))
res1 = r.json().get('image1')
if res1 is not None and res1:
face = res1.get('detection')
x1 = face.get('x')
y1 = face.get('y')
x2 = x1 + face.get('w')
y2 = y1 + face.get('h')
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image1.width:
x2 = image1.width - 1
if y2 >= image1.height:
y2 = image1.height - 1
face1 = image1.crop((x1, y1, x2, y2))
face_image_ratio = face1.width / float(face1.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face1 = face1.resize((int(resized_w), int(resized_h)))
res2 = r.json().get('image2')
if res2 is not None and res2:
face = res2.get('detection')
x1 = face.get('x')
y1 = face.get('y')
x2 = x1 + face.get('w')
y2 = y1 + face.get('h')
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image2.width:
x2 = image2.width - 1
if y2 >= image2.height:
y2 = image2.height - 1
face2 = image2.crop((x1, y1, x2, y2))
face_image_ratio = face2.width / float(face2.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face2 = face2.resize((int(resized_w), int(resized_h)))
except:
pass
matching_result = Image.open("icons/blank.png")
similarity_score = ""
if face1 is not None and face2 is not None:
matching_score = r.json().get('matching_score')
if matching_score is not None:
str_score = str("{:.4f}".format(matching_score))
if matching_score >= 0.7:
matching_result = Image.open("icons/same.png")
similarity_score = f"""
Similarity score: {str_score}
"""
else:
matching_result = Image.open("icons/different.png")
similarity_score = f"""
Similarity score: {str_score}
"""
return [face1, face2, matching_result, similarity_score]
def image_change_callback(image_data):
# This function will be called whenever a new image is set for the gr.Image component
print("New image set:", image_data)
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
Recognito
www.recognito.vision
✨ NIST FRVT Top #1 Face Recognition Algorithm Developer
🤝 Contact us for our on-premise SDKs deployment
"""
)
with gr.Tabs():
with gr.Tab("Face Recognition"):
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
with gr.Column(scale=1):
compare_face_input1 = gr.Image(label="Image1", type='filepath', elem_classes="example-image")
gr.Examples(['examples/1.jpg', 'examples/2.jpg', 'examples/3.jpg', 'examples/4.jpg'],
inputs=compare_face_input1)
with gr.Column(scale=1):
compare_face_input2 = gr.Image(label="Image2", type='filepath', elem_classes="example-image")
gr.Examples(['examples/5.jpg', 'examples/6.jpg', 'examples/7.jpg', 'examples/8.jpg'],
inputs=compare_face_input2)
with gr.Blocks():
with gr.Column(scale=1, min_width=400, elem_classes="block-background"):
compare_face_button = gr.Button("Compare Face", variant="primary", size="lg")
with gr.Row(elem_classes="face-row"):
face_output1 = gr.Image(value="icons/face.jpg", label="Face 1", scale=0, elem_classes="face-image")
compare_result = gr.Image(value="icons/blank.png", min_width=30, scale=0, show_download_button=False, show_label=False)
face_output2 = gr.Image(value="icons/face.jpg", label="Face 2", scale=0, elem_classes="face-image")
similarity_markdown = gr.Markdown("")
compare_face_button.click(compare_face, inputs=[compare_face_input1, compare_face_input2], outputs=[face_output1, face_output2, compare_result, similarity_markdown])
with gr.Tab("Face Liveness, Analysis"):
with gr.Row():
with gr.Column(scale=1):
face_input = gr.Image(label="Image", type='filepath', elem_classes="example-image")
gr.Examples(['examples/att_1.jpg', 'examples/att_2.jpg', 'examples/att_3.jpg', 'examples/att_4.jpg', 'examples/att_5.jpg', 'examples/att_6.jpg', 'examples/att_7.jpg', 'examples/att_8.jpg', 'examples/att_9.jpg', 'examples/att_10.jpg'],
inputs=face_input)
with gr.Blocks():
with gr.Column(scale=1, elem_classes="block-background"):
analyze_face_button = gr.Button("Analyze Face", variant="primary", size="lg")
with gr.Row(elem_classes="face-row"):
face_output = gr.Image(value="icons/face.jpg", label="Face", scale=0, elem_classes="face-image")
liveness_result = gr.Markdown("")
attribute_result = gr.Markdown("")
analyze_face_button.click(analyze_face, inputs=face_input, outputs=[face_output, liveness_result, attribute_result])
gr.HTML('
')
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)