recoilme's picture
Add application file
a00a71d
raw
history blame
2.57 kB
import gradio as gr
import torch
from diffusers import DiffusionPipeline
from diffusers import EulerDiscreteScheduler
pipeline = DiffusionPipeline.from_pretrained("recoilme/ColorfulXL-Lightning",variant="fp16"#, torch_dtype=torch.float16
, use_safetensors=True)#.to("cuda")
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing")
def generate(prompt, negative_prompt, width, height, sample_steps):
return pipeline(prompt=prompt, guidance_scale=0, negative_prompt="", width=width, height=height, num_inference_steps=sample_steps).images[0]
with gr.Blocks() as interface:
with gr.Column():
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", info="What do you want?", value="girl sitting on a small hill looking at night sky, back view, distant exploding moon, nights darkness, intricate circuits and sensors, photographic realism style, detailed textures, peacefulness, mysterious.", lines=4, interactive=True)
with gr.Column():
generate_button = gr.Button("Generate")
output = gr.Image()
with gr.Row():
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row():
with gr.Column():
width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=576, minimum=512, maximum=1280, step=64, interactive=True)
height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=832, minimum=512, maximum=1280, step=64, interactive=True)
with gr.Column():
sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=5, minimum=3, maximum=10, step=1, interactive=True)
with gr.Row():
about_text = """
Based on: Stable Diffusion XL Image Generation interface built by Noa Roggendorff.
You can enter a prompt and negative prompt, adjust the image size and sampling steps, and click the "Generate" button to generate an image.
"""
gr.Markdown(about_text)
generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps], outputs=[output])
if __name__ == "__main__":
interface.launch()