Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import DiffusionPipeline | |
from diffusers import EulerDiscreteScheduler | |
pipeline = DiffusionPipeline.from_pretrained("recoilme/ColorfulXL-Lightning",variant="fp16"#, torch_dtype=torch.float16 | |
, use_safetensors=True)#.to("cuda") | |
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing") | |
def generate(prompt, negative_prompt, width, height, sample_steps): | |
return pipeline(prompt=prompt, guidance_scale=0, negative_prompt="", width=width, height=height, num_inference_steps=sample_steps).images[0] | |
with gr.Blocks() as interface: | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", info="What do you want?", value="girl sitting on a small hill looking at night sky, back view, distant exploding moon, nights darkness, intricate circuits and sensors, photographic realism style, detailed textures, peacefulness, mysterious.", lines=4, interactive=True) | |
with gr.Column(): | |
generate_button = gr.Button("Generate") | |
output = gr.Image() | |
with gr.Row(): | |
with gr.Accordion(label="Advanced Settings", open=False): | |
with gr.Row(): | |
with gr.Column(): | |
width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=576, minimum=512, maximum=1280, step=64, interactive=True) | |
height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=832, minimum=512, maximum=1280, step=64, interactive=True) | |
with gr.Column(): | |
sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=5, minimum=3, maximum=10, step=1, interactive=True) | |
with gr.Row(): | |
about_text = """ | |
Based on: Stable Diffusion XL Image Generation interface built by Noa Roggendorff. | |
You can enter a prompt and negative prompt, adjust the image size and sampling steps, and click the "Generate" button to generate an image. | |
""" | |
gr.Markdown(about_text) | |
generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps], outputs=[output]) | |
if __name__ == "__main__": | |
interface.launch() | |